
El proyecto empezó a mediados de los años 80 por Canon, y más tarde, en 1999 tuvo un gran apoyo por parte Toshiba, multinacional dedicada a la electrónica. Esta unión plantea la creación de un proyecto común bajo un mismo nombre, de esta manera aparece esta tecnología con el nombre de SED Inc. Además, el desarrollo de esta tecnología se ha acelerado vertiginosamente con perspectivas para poderla comercializar en el 2007 (previsión de venta en el mercado sin confirmar). La compañía prevé pantallas que soporten más de 40 pulgadas.
Así pues, cada píxel tendrá su propio cañón de electrones. Este cañón de electrones se forma a partir de dos electrodos muy pequeños (microscópicos) separados por unos nanómetros de distancia. A estos electrodos se les aplica una tensión de 16 voltios que "atraviesa" los nanómetros que separa los electrodos. Fruto de este "salto" entre electrodos, la corriente genera electrones que salen disparados hacia todas las direcciones. Para canalizar estos electrones hasta el fósforo que lo hará brillar se utiliza un campo eléctrico de 10 Kilovoltios hacia la dirección donde esté el fósforo. De esta manera se genera un haz de electrones unidireccional que impacta sobre el fósforo perteneciente a un determinado píxel.
Para formar una imagen entera se necesitan cientos de miles de píxeles (millones en alta definición). Por lo tanto actualmente se está estudiando la colocación de los cañones de electrones en un reducido espacio, sin que ello signifique una pérdida de funcionalidad por parte de dichos cañones o una pérdida de homogeneidad en la imagen.
-No habrá ningún problema para el ángulo de visión de la pantalla (De este modo no habrá cambios de color y brillo desde diferentes ángulos).
-Su consumo rebaja 2/3 la potencia utilizada en un CRT. 1/3 con respecto a la utilizada en los LCD.
-Tolerará temperaturas desde los -40º a los +85º.
-El proceso de fabricación es más sencillo que el de las pantallas LCD.
-No habrá problemas con el refresco de la imagen y su fluidez ya que utilizarán la misma velocidad de refresco que un televisor CRT normal.
-El color negro alcanzará mayor calidad.
PANTALLA OLED

Se trata de una variante del LED clásico, pero donde la capa de emisión tiene un componente orgánico. Las pantallas OLED tienen la ventaja de no requerir luz trasera, con lo que ahorran mucha energía. Su coste también es menor. La principal desventaja que presenta es que su tiempo de vida no es tan bueno como el de las anteriores tecnologías que os hemos presentado.
Los paneles OLED tienen una gran ventaja, son mejores a la hora de mostrar los colores, los negros son más negros, colores más brillantes y fieles a la realidad, pese a que puede que pierdan calidad tras miles de horas.
Un diodo orgánico de emisión de luz, también conocido como OLED (acrónimo del inglés: Organic Light-Emitting Diode), es un diodo que se basa en una capa electroluminiscente formada por una película de componentes orgánicos que reaccionan, a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.
Existen muchas tecnologías OLED diferentes, tantas como la gran diversidad de estructuras (y materiales) que se han podido idear (e implementar) para contener y mantener la capa electroluminiscente, así como según el tipo de componentes orgánicos utilizados.
Las principales ventajas de los OLEDs son: menor coste, mayor escalabilidad, mayor rango de colores, más contrastes y brillos, mayor ángulo de visión, menor consumo y, en algunas tecnologías, flexibilidad. Pero la degradación de los materiales OLED han limitado su uso por el momento. Actualmente se está investigando para dar solución a los problemas derivados, hecho que hará de los OLEDs una tecnología que puede reemplazar la actual hegemonía de las pantallas LCD (TFT) y de la pantalla de plasma.
Por todo ello, OLED puede y podrá ser usado en todo tipo de aplicaciones: pantallas de televisión, pantalla de ordenador, pantallas de dispositivos portátiles (teléfonos móviles, PDAs, reproductores MP3...), indicadores de información o de aviso, etc. con formatos que bajo cualquier diseño irán desde unas dimensiones pequeñas (2") hasta enormes tamaños (equivalentes a los que se están consiguiendo con LCD). Mediante los OLEDs también se pueden crear grandes o pequeños carteles de publicidad, así como fuentes de luz para iluminar espacios generales. Además, algunas tecnologías OLED tienen la capacidad de tener una estructura flexible, lo que ya ha dado lugar a desarrollar pantallas plegables, y en el futuro quizá pantallas sobre ropa y tejidos, etc.
ESTRUCTURA BASICA
Un OLED está compuesto por dos finas capas orgánicas: capa de emisión y capa de conducción, que a la vez están comprendidas entre una fina película que hace de terminal ánodo y otra igual que hace de cátodo. En general estas capas están hechas de moléculas o polímeros que conducen la electricidad. Sus niveles de conductividad eléctrica van desde los niveles aisladores hasta los conductores, y por ello se llaman semiconductores orgánicos (ver polímero semiconductor).
La elección de los materiales orgánicos y la estructura de las capas determinan las características de funcionamiento del dispositivo: color emitido, tiempo de vida y eficiencia energética.
PRINCIPIO DE FUNCIONAMIENTO
Se aplica voltaje a través del OLED de manera que el ánodo es positivo respecto del cátodo. Esto causa una corriente de electrones que fluye en este sentido. Así, el cátodo da electrones a la capa de emisión y el ánodo los sustrae de la capa de conducción.
Seguidamente, la capa de emisión comienza a cargarse negativamente (por exceso de electrones), mientras que la capa de conducción se carga con huecos (por carencia de electrones). Las fuerzas electroestáticas atraen a los electrones y a los huecos, los unos con los otros, y se recombinan (en el sentido inverso de la carga no habría recombinación y el dispositivo no funcionaría). Esto sucede más cercanamente a la capa de emisión, porque en los semiconductores orgánicos los huecos son más movidos que los electrones (no ocurre así en los semiconductores inorgánicos).
La recombinación es el fenómeno en el que un átomo atrapa un electrón. Dicho electrón pasa de una capa energética mayor a otra menor, liberándose una energía igual a la diferencia entre energías inicial y final, en forma de fotón.
La recombinación causa una emisión de radiación a una frecuencia que está en la región visible, y se observa un punto de luz en un color determinado. La suma de muchas de estas recombinaciones que ocurren de forma simultánea es lo que llamaríamos imagen.
VENTAJAS
Los OLEDs ofrecen muchas ventajas en comparación con los LCDs, LEDs y pantallas de plasma.
Más delgados y flexibles. Por una parte, las capas orgánicas de polímeros o moléculas de los OLEDs son más delgadas, luminosas y mucho más flexibles que las capas cristalinas de un LED o LCD. Por otra parte, en algunas tecnologías el sustrato de impresión de los OLEDs puede ser el plástico, que ofrece flexibilidad frente a la rigidez del cristal que da soporte a los LCDs o pantallas de plasma.
Más económicos, en el futuro. En general, los elementos orgánicos y los sustratos de plástico serán mucho más económicos. También, los procesos de fabricación de OLEDs pueden utilizar conocidas tecnologías de impresión de tinta (en inglés, conocida como inkjet), hecho que disminuirá los costes de producción.
Más brillo y contrastes. Los píxeles de OLED emiten luz directamente. Por eso, respecto los LCDs posibilitan un rango más grande de colores, más brillo y contrastes, y más ángulo de visión.
Menos consumo de energía. Los OLEDs no necesitan la tecnología backlight, es decir, un elemento OLED apagado realmente no produce luz y no consume energía, a diferencia de los LCDs que no pueden mostrar un verdadero “negro” y lo componen con luz consumiendo energía continuamente. Así, los OLEDs muestran imágenes con menos potencia de luz, y cuando son alimentados desde una batería pueden operar largamente con la misma carga.
Más escalabilidad y nuevas aplicaciones. La capacidad futura de poder escalar las pantallas a grandes dimensiones hasta ahora ya conseguidas por los LCDs y, sobre todo, poder enrollar y doblar las pantallas en algunas de las tecnologías OLED que lo permiten, abre las puertas a todo un mundo de nuevas aplicaciones que están por llegar.
PANTALLAS HOLOGRAFICAS

Pantalla adhesiva Holográfica:
- Pantalla transparente adhesiva para instalar en cualquier superficie lisa y transparente.
- Indicada para ver partidos de fútbol, programas de TV, promociones, eventos, etc., para interioro también desde el exterior.
- Disponible en soporte de vidrio para posibles cambios de ubicación, hasta 100".
- Para retroproyectores de colores brillantes, incluso a plena luz del día. - Modelos disponibles en 90% (Holo 90L) y 98% (Holo 98L) transparencia.
- También adaptada para aplicar la tecnología adhesiva táctil interactiva y crear así el escaparate interactivo mas espectacular del mercado.
- Algunas medidas: 40" (855mm x 650mm x 1mm) / 1,5Kg 50"(1000mm x 750mm x 1mm) / 2kg 67" (1330mm x 1000mm x 1mm) / 3,5kg
Pantalla Holográfica soporte vidrio (Holo 90V y Holo 98V):
- Pantalla Holográfica instalada en soporte de vidrio de alta calidad.
- Pantalla con 90% y 98% de transparencia para retroproyecciones de brillantes colores incluso a plena luz del día.
- Larga duración. Resistente a los arañazos. Protección anti-incendios.
- Para retroproyectores de colores brillantes, incluso a plena luz del día.
- También para escaparate interactivo- Algunas medidas: 20" (400 mm x 300 mm) / 4 Kg 50"(1000mm x 750mm) / 23 kg 67" (1330mm x 1000mm) / 38 kg
Pantalla Holográfica Antireflejos (Holo AR):
- Pantalla adhesiva para interiores, indicada para ver TV.
- Absorbe la luz ambiental permitiendo una visión perfecta de la imagen.
- Resistente a los arañazos, rascadas, etc.- Disponible en 40", 50", 60", 80" y 100"
Holo 64:
- Pantalla holográfica disponible en soporte acrílico.
- Los más grandes formatos del mundo en su modalidad (hasta 5 m. de diagonal).
- Bajo peso, fácil instalación.
- Se puede recortar en cualquier forma y medida (triangular, redonda, elíptica, logo corporativo).
- Medidas de ejemplo: 50" (1077mm x 758mm) / 4kg 72" (1525mm x 1093mm) / 11kg 96" (2030mm x 1400mm) / 18kg 200" (4115mm x 3099mm) / 89k.
PANTALLAS TACTILES

Una pantalla táctil (touchscreen en inglés) es una pantalla que mediante un contacto directo sobre su superficie permite la entrada de datos y órdenes al dispositivo. A su vez, actúa como periférico de salida, mostrando los resultados introducidos previamente. Este contacto también se puede realizar con lápiz u otras herramientas similares. Actualmente hay pantallas táctiles que pueden instalarse sobre una pantalla normal. Así pues, la pantalla táctil puede actuar como periférico de entrada y periférico de salida de datos.
Las pantallas tactiles se han ido haciendo populares desde la invención de la interfaz electrónica táctil en 1971 por el Dr. Samuel C. Hurst. Han llegado a ser comunes en TPVs, en cajeros automáticos y en PDAs donde se suele emplear un estilo para manipular la interfaz gráfica de usuario y para introducir datos. La popularidad de los teléfonos inteligentes, de las PDAs, de las vídeo consolas portátiles o de los navegadores de automóviles está generando la demanda y la aceptación de las pantallas táctiles.
El HP-150 fue, en 1983, uno de los primeros ordenadores comerciales del mundo que disponía de pantalla táctil. En realidad no tenía una pantalla táctil en el sentido propiamente dicho, sino una pantalla de tubo Sony de 9 pulgadas rodeada de transmisores y receptores infrarrojos que detectaban la posición de cualquier objeto no-transparente sobre la pantalla.
Las pantallas táctiles de última generación consisten en un cristal transparente donde se sitúa una lámina que permite al usuario interactuar directamente sobre esta superficie, utilizando un proyector para lanzar la imagen sobre la pantalla de cristal. Se sale de lo que hasta hoy día se entendía por pantalla táctil que era básicamente un monitor táctil.
Las pantallas táctiles son populares en la industria pesada y en otras situaciones, tales como exposiciones de museos donde los teclados y los ratones no permiten una interacción satisfactoria, intuitiva, rápida, o exacta del usuario con el contenido de la exposición.
TECNOLOGIAS
Hay diferentes tecnologías de implementación de las pantallas táctiles:
Resistiva
Una pantalla táctil resistiva esta formada por varias capas. Las más importantes son dos finas capas de material conductor entre las cuales hay una pequeña separación. Cuando algún objeto toca la superficie de la capa exterior, las dos capas conductoras entran en contacto en un punto concreto. De esta forma se produce un cambio en la corriente eléctrica que permite a un controlador calcular la posición del punto en el que se ha tocado la pantalla midiendo la resistencia. Algunas pantallas pueden medir, aparte de las coordenadas del contacto, la presión que se ha ejercido sobre la misma.
Las pantallas táctiles resistivas son por norma general más asequibles pero tienen una pérdida de aproximadamente el 25% del brillo debido a las múltiples capas necesarias. Otro inconveniente que tienen es que pueden ser dañadas por objetos afilados. Por el contrario no se ven afectadas por elementos externos como polvo o agua, razón por la que son el tipo de pantallas táctiles más usado en la actualidad.
De Onda Acústica Superficial
La tecnología de onda acústica superficial (denotada a menudo por las siglas SAW, del inglés Surface Acoustic Wave) utiliza ondas de ultrasonidos que se transmiten sobre la pantalla táctil. Cuando la pantalla es tocada, una parte de la onda es absorbida. Este cambio en las ondas de ultrasonidos permite registrar la posición en la que se ha tocado la pantalla y enviarla al controlador para que pueda procesarla.
El funcionamiento de estas pantallas puede verse afectado por elementos externos. La presencia de contaminantes sobre la superficie también puede interferir con el funcionamiento de la pantalla táctil.
Capacitivas
Una pantalla táctil capacitiva esta cubierta con un material, habitualmente óxido de indio y estaño que conduce una corriente eléctrica continua a través del sensor. El sensor por tanto muestra un campo de electrones controlado con precisión tanto en el eje vertical como en el horizontal, es decir, adquiere capacitancia. El cuerpo humano también se puede considerar un dispositivo eléctrico en cuyo interior hay electrones, por lo que también dispone de capacitancia. Cuando el campo de capacitancia normal del sensor (su estado de referencia) es alterado por otro campo de capacitancia, como puede ser el dedo de una persona, los circuitos electrónicos situados en cada esquina de la pantalla miden la 'distorsión' resultante en la onda senoidal característica del campo de referencia y envía la información acerca de este evento al controlador para su procesamiento matemático. Los sensores capacitivos deben ser tocados con un dispositivo conductivo en contacto directo con la mano o con un dedo, al contrario que las pantallas resistivas o de onda superficial en las que se puede utilizar cualquier objeto. Las pantallas táctiles capacitivas no se ven afectadas por elementos externos y tienen una alta claridad, pero su complejo procesado de la señal hace que su coste sea elevado.
Infrarrojos
Las pantallas táctiles por infrarrojos consisten en una matriz de sensores y emisores infrarrojos horizontales y verticales. En cada eje los receptores están en el lado opuesto a los emisores de forma que al tocar con un objeto la pantalla se interrumpe un haz infrarrojo vertical y otro horizontal, permitiendo de esta forma localizar la posición exacta en que se realizó el contacto. Este tipo de pantallas son muy resistentes por lo que son utilizadas en muchas de las aplicaciones militares que exigen una pantalla táctil.
Galga Extensiométrica
Cuando se utilizan galgas extensiométricas la pantalla tiene una estructura elástica de forma que se pueden utilizar galgas extensiométricas para determinar la posición en que ha sido tocada a partir de las deformaciones producidas en la misma. Esta tecnología también puede medir el eje Z o la presión ejercida sobre la pantalla. Se usan habitualmente en sistemas que se encuentran expuestos al público como máquinas de venta de entradas, debido sobre todo a su resistencia al vandalismo.
Imagen Óptica
Es un desarrollo relativamente moderno en la tecnología de pantallas táctiles, dos o más sensores son situados alrededor de la pantalla, habitualmente en las esquinas. Emisores de infrarrojos son situados en el campo de vista de la cámara en los otros lados de la pantalla. Un toque en la pantalla muestra una sombra de forma que cada par de cámaras puede triangularizarla para localizar el punto de contacto. Esta tecnología está ganando popularidad debido a su escalabilidad, versatilidad y asequibilidad, especialmente para pantallas de gran tamaño.
Tecnología de Señal Dispersiva
Introducida en el año 2002, este sistema utiliza sensores para detectar la energía mecánica producida en el cristal debido a un toque. Unos algoritmos complejos se encargan de interpretar esta información para obtener el punto exacto del contacto. Esta tecnología es muy resistente al polvo y otros elementos externos, incluidos arañazos. Como no hay necesidad de elementos adicionales en la pantalla también proporciona unos excelentes niveles de claridad. Por otro lado, como el contacto es detectado a través de vibraciones mecánicas, cualquier objeto puede ser utilizado para detectar estos eventos, incluyendo el dedo o uñas. Un efecto lateral negativo de esta tecnología es que tras el contacto inicial el sistema no es capaz de detectar un dedo u objeto que se encuentre parado tocando la pantalla.
Reconocimiento de Pulso Acústico
Introducida en el año 2006, estos sistemas utilizan cuatro transductores piezoeléctricos situados en cada lado de la pantalla para convertir la energía mecánica del contacto en una señal electrónica. Esta señal es posteriormente convertida en una onda de sonido, la cual es comparada con el perfil de sonido preexistente para cada posición en la pantalla. Este sistema tiene la ventaja de que no necesita ninguna malla de cables sobre la pantalla y que la pantalla táctil es de hecho de cristal, proporcionando la óptica y la durabilidad del cristal con el que está fabricada. También presenta las ventajas de funcionar con arañazos y polvo sobre la pantalla, de tener unos altos niveles de precisión y de que no necesita ningún objeto especial para su utilización.
No hay comentarios:
Publicar un comentario