sábado, 30 de agosto de 2008

YUGO DE DEFLEXION - BARRIDO VERTICAL Y BARRIDO HORIZONTAL

YUGO DE DEFLEXION

Posee dos bobinas, la horizontal para hacer el barrido horizontal (interna), y dos bobinas verticales ( externas), para hacer el barrido vertical.
Ellas desvian el haz de luz generado por el TRC tanto vertical como horizontalmente. El conector esta identificado para el horizontal como rojo y azul (gruesos), amarillo, cafe o verde.
El valor tipico de las bobinas esta entre 0.9 y 1.6 ohmios dependiendo el yugo.





ETAPA VERTICAL


Esta etapa la podemos diferenciar por el yugo, de este yugo salen un conector con 4 cables a la plaqueta, los cables mas delgados son los de la bobina vertical, uno de ellos llega a un pin de un integrado de salida vertical. Además siempre va en un disipador de calor.

El circuito de Barrido Vertical es el encargado de hacer que el haz de electrones se desplace en sentido vertical, es decir de arriba hasta la parte inferior de la pantalla.Por lo tanto es quien debe hacer circular una corriente por los devanados que forman la sección del yugo vertical de modo tal que influya con su campo magnético en el haz electrónico dentro de la pantalla, o haces electrónicos si se trata de una Pantalla a color.Es de vital importancia que como este circuito es quien nos dibuja las 525 líneas horizontales en asocio con el circuito Horizontal, estas líneas deben tener la misma separación entre líneas (Linealidad Vertical), para que la imagen se reproduzca sin deformaciones; por lo tanto la corriente que circule por el Yugo Vertical debe tener una característica especial.Esta señal la genera o crea un circuito que se llama Oscilador Vertical, pero antes de conocer como se crea vamos a centrarnos primero en la parte que maneja la Potencia, que es una de las que mas falla.La etapa de salida vertical mas usada en lo TV no tan nuevos es la que contiene dos Transistores de Potencia por lo general Caso 375 que trabajan en montaje Push-Pull lo que significa que cuando el uno conduce el otro se apaga y eso se logra con dos señales simultáneas generadas en el Oscilador Vertical. Vea la siguiente figura:En este circuito tenemos los dos transistores identificados como Q501 y Q502. Q501 es el encargado de "Cargar " el C520 pasando su corriente por el Yugo Vertical; cuando el C520 comienza su carga se crea un campo magnético en el Yugo que hace que el Haz se ubique en la parte superior de la pantalla.A medida que el C520 se carga, su corriente va disminuyendo lo mismo que su campo magnético y eso resulta en que el haz con el tiempo vaya bajando buscando el centro o punto de reposo.Pasado determinado tiempo y cuando el haz está en el centro de la pantalla en sentido horizontal; por la señal generada en el Oscilador y Driver vertical hace que el Q501 que inicialmente estaba en conducción o activo, deje de hacerlo y active el Q502.Al conducir el Q502 (recuerde que la estructura electrónica es tal que cuando el Q501 conduce el Q502 se corta y viceversa ) el Q501 deja de cargar el C520, pero al conducir el Q502 el C520 comienza a descargarse. Eso implica que la corriente en el Yugo cambia de dirección, por lo tanto el campo magnético tambien cambia y eso hace que el haz se vaya del centro hacia la parte inferior de la pantalla. De ese modo se completa el "llenado" de la pantalla.Como bien sabemos una ves llegado el haz a la parte inferior de la pantalla, este debe subir a la parte superior izquierda de la pantalla.Eso lo hace mediante suspender de manera "brusca" o intempestiva la corriente que este fluyendo por el Yugo.Esto se logra cuando el Q502 suspende la "descarga" total del C520. Bien sabemos que cuando se suspende el fluido eléctrico en un devanado la reacción natural es que este autogenere un pico de voltaje; ese pico generado en el Yugo se encarga de subir el haz al la parte superior de la pantalla y para ese mismo instante el Q501 ya ha comenzado a "cargar" de nuevo el C520, comenzando un nuevo ciclo de trabajo, que se repite 59,94 Hz.Estas señales que tenemos en la siguiente figura nos ayuda a entender lo que hemos explicado. Observe como la forma de onda es tal, que medio ciclo influye en el Q502 ("ON" o en conducción) mientras que el Q501 esta "OFF" o apagado. El otro medio ciclo restante es el encargado de invertir el funcionamiento de los transistores.




ETAPA HORIZONTAL:

P.F: Pulso del Flyback, necesario para que el monitor prenda.

Q1: Transistor drive del horizontal, si este transistores falla el monitor no prende por lo normal es NPN y se mide como transistor tradicional.

T1: Transformador adaptador de inductancias.

Q2: Es el transistor de salida horizontal. Este transistor tiene internamente una resistencia y un diodo damper por lo tanto no marca como uno tradicional.

T2: Transformador Flyback. Encargado de generar el alto voltaje (HV) para la pantalla y en sus otras bobinas suministra el voltaje para las otras etapas.

FLYBACK: Es un transformador especial de alta tensión encargado de entregar la corriente en forma de diente de sierra para excitar al yugo de deflexión horizontal, y de generar varias tensiones. En los monitores esto es diferente en algunos aspectos como ser la salida vertical, esta viene alimentado de la fuente secundaria y en los tvs lo alimenta directamente un bobinado del flyback. También tiene otro aspecto diferente en cuanto a los monitores y esta diferencia radica en la alimentación del filamento de la pantalla, en el TV el flyback suministra la tensión para el filamento y en los monitores existe una alimentación independiente que viene de la fuente secundaria.

miércoles, 13 de agosto de 2008

MONITORES

El monitor es una parte del ordenador a la que muchas veces no le damos la importancia que se merece.
Hay que tener en cuenta que junto con el teclado y el ratón son las partes que interactúan con nuestro cuerpo, y que si no le prestamos la atención debida, podremos llegar incluso a perjudicar nuestra salud.
Evidentemente no en el caso de personas que hacen un úso esporádico, pero si en programadores impenitentes o navegadores incansables, que puedan pasarse muchas horas diarias al frente de la pantalla.
Vamos a explicar los parámetros que influyen en la calidad de un monitor:




TAMAÑO

El tamaño de los monitores se mide en pulgadas, al igual que los televisores. Hay que tener en cuenta que lo que se mide es la longitud de la diagonal, y que además estamos hablando de tamaño de tubo, ya que el tamaño aprovechable siempre es menor.
El tamaño es importante porque nos permite tener varias tareas a la vez de forma visible, y poder trabajar con ellas de manera cómoda.También es importante en el caso de que se manejen documentos de gran tamaño o complejidad, tales como archivos de CAD, diseño, 3D, etc que requieren de gran detalle. En estos casos son aconsejables tamaños de 21".También es importante tener en cuenta que con Windows 98 ya es posible conectar varios monitores al mismo PC, por lo que en el caso de requerir la visualización de varias tareas a la vez puede ser importante, por ejemplo, sustituir un monitor de 27 pulgadas por dos de 15, que será una solución más barata y quizás más cómoda.
Nunca hemos de aceptar menos de 15" (pulgadas). Hoy en día es el estándar, y es lo mínimo exigible, además de ser los que mejor precio ofrecen.



TUBO

Otro aspecto importante es la marca del tubo y el tipo, así como otros detalles relacionados con él. Fabricantes de monitores hay muchos, pero de tubos son contados, con lo que si sabemos que modelo de tubo lleva nuestro monitor sabremos ya bastantes cosas importantes de él.
Fabricantes de tubos son: Sony, Mitsubishi, Nec, Phillips, etc...
Y normalmente cada fabricante se identifica con un tipo de tubo, por ejemplo Sony con el Trinitron (que sigue siendo punto de referencia), Mitsubishi con el DiamondTron, etc...
El tubo nos definirá si la pantalla es más o menos plana y cuadrada, el tamaño del punto (dot pix) si tiene tratamiento antirreflejos, etc...
También nos servirá para comparar entre diferentes marcas, ya que si encontramos dos con el mismo tubo, pues ya sabemos que son iguales en casi todas las características más importantes, y por tanto no debería haber mucha diferencia en cuanto a precio, a no ser que uno contara con muchos aditivos como controles digitales y características multimedia y el otro no. Tengamos presente que casi todo el coste del monitor es debido al tubo.


TAMAÑO DE PUNTO

Esta es una de las características que depende del tubo, y define el tamaño que tendrá cada uno de los puntos que forman la imagen, por tanto cuanto más pequeño más preciso será.
No hay que confundir el tamaño de punto con el "pixel". El pixel depende de la resolución de la pantalla, y puede variar, mientras que el punto es fijo, y depende exclusivamente del tubo.
Tamaños "normales" son alrededor de 0,28 mm. y es aconsejable que no sea de mayor tamaño, en todo caso menor, como los 0,25 de los tubos Trinitron.




FRECUENCIA DE REFRESCO

Aquí si que podemos decir claramente que cuanto más mejor. La frecuencia de refresco está proporcionalmente ligada a la estabilidad de la imagen, y por tanto al descanso y confort de nuestra vista.Nunca deberíamos escoger valores por debajo de los 75 Hz en modos de 1.024 x 768 puntos, aunque un valor óptimo sería de 90 Hz., que sería el mínimo exigible en resoluciones menores.En resoluciones mayores, seguramente nos tengamos que conformar con valores más bajos.
También hay que tener claro que la tarjeta de video debe ser capaz de proporcionar esos valores, ya que de no ser así, de nada nos servirá que el monitor los soporte.



RESOLUCIONES

Resolución de pantalla se denomina a la cantidad de pixels que se pueden ubicar en un determinado modo de pantalla. Estos pixels están a su vez distribuidos entre el total de horizontales y el de verticales.
Todos los monitores pueden trabajar con múltiples modos, pero dependiendo del tamaño del monitor, unos nos serán más útiles que otros.
Cuando hablamos de resoluciones, hay que decir lo mismo que con las frecuencias de refresco, si nuestra tarjeta de video no las soporta, no podremos usarlas.
Hay que tener mucho cuidado de que estas resoluciones se obtengan de manera "no entrelazada", ya que sino, la calidad de la imagen se resiente de una forma inaceptable, reduciendo la frecuencia de refresco REAL a la mitad.




PIXEL

Unidad mínima representable en un monitor.
Pixel, abreviatura de Picture Element, es un único punto en una imagen gráfica. Los monitores gráficos muestran imágenes dividiendo la pantalla en miles (o millones) de pixeles, dispuestos en filas y columnas. Los pixeles están tan juntos que parece que estén conectados.
El número de bits usados para representar cada pixel determina cuántos colores o gamas de gris pueden ser mostrados. Por ejemplo, en modo color de 8-bits, el monitor en color utiliza 8 bits para cada pixel, permitiendo mostrar 2 elevado a 8 (256) colores diferentes o gamas de gris.
En monitores de color, cada pixel se compone realmente de tres puntos -- uno rojo, uno azul, y uno verde. Idealmente, los tres puntos convergen en el mismo punto, pero todos los monitores tienen cierto error de convergencia que puede hacer que el color los pixeles aparezca borroso.
La calidad de un sistema de visualización depende en gran medida de su resolución, es decir, cuántos bits utilizan para representar cada pixel.




BLINDAJE

Un monitor puede o no estar blindando ante interferencias electricas externas y ser más o menos sensible a ellas, por lo que en caso de estar blindando, o semiblindado por la parte trasera llevara cubriendo prácticamente la totalidad del tubo una plancha metalica en contanto con tierra o masa.


LINEAS DE TENSION

Son unas líneas horizontales, que tienen los monitores de apertura de rejilla para mantener las líneas que permiten mostrar los colores perfectamente alineadas; en 19 pulgadas lo habitual suelen ser 2, aunque también los hay con 3 líneas, algunos monitores pequeños incluso tienen una sola.


CONTROLES Y CONEXIONES

Una característica casi común a los monitores con controles digitales son los controles OSD ( On Screen Control , controles en pantalla). Son esos mensajes que nos indican qué parámetro estamos cambiando y qué valor le estamos dando.
Lo que sí suelen tener algunos monitores digitales son memorias de los parámetros de imagen (tamaño, posición...), por lo que al cambiar de resolución no tenemos que reajustar dichos valores.
En cuanto a los controles en sí, los imprescindibles son: posición de la imagen, tamaño vertical y horizontal de la imagen, tono y brillo. Son de agradecer los controles trapezoidales (para mantenerla rectangular), los de "efecto barril" (para mantener rectos los bordes de la imagen) y desmagnetización.



Por lo que respecta a las conexiones, no debe faltar el típico conector mini D-sub de 15 pines (VGA) y el S-Video. En monitores de 17" o más es interesante que existan además conectores BNC, que presentan la ventaja de separar los tres colores básicos; además en los monitores mas modernos, debe estar presente otra conexión digital, la DVI. De cualquier modo, esto sólo importa si la tarjeta gráfica también los incorpora y si la precisión en la representación del color resulta determinante en el uso del monitor.



TIPOS DE MONITORES


Vamos a hacer la clasificación de los monitores de dos maneras distintas:
1. Atendiendo al color:

1.1 Monitores color : Las pantallas de estos monitores están formadas internamente por tres capas de material de fósforo, una por cada color básico (rojo, verde y azul). También consta de tres cañones de electrones, que al igual que las capas de fósforo, hay uno por cada color. Para formar un color en pantalla que no sea ninguno de los colores básicos, se combinan las intensidades de los haces de electrones de los tres colores básicos.

1.2 Monitores monocromáticos : Muestra por pantalla un solo color: negro sobre blanco o ámbar, o verde sobre negro. Uno de estos monitores con una resolución equivalente a la de un monitor color, si es de buena calidad, generalmente es más nítido y más legible.




2. Atendiendo a la tecnología usada:

2.1 Monitores de cristal líquido :
Los cristales líquidos son sustancias transparentes con cualidades propias de líquidos y de sólidos. Al igual que los sólidos, una luz que atraviesa un cristal líquido sigue el alineamiento de las moléculas, pero al igual que los líquidos, aplicando una carga eléctrica a estos cristales, se produce un cambio en la alineación de las moléculas, y por tanto en el modo en que la luz pasa a través de ellas. Una pantalla LCD está formada por dos filtros polarizantes con filas de cristales líquidos alineados perpendicularmente entre sí, de modo que al aplicar o dejar de aplicar una corriente eléctrica a los filtros, se consigue que la luz pase o no pase a través de ellos, según el segundo filtro bloquee o no el paso de la luz que ha atravesado el primero. El color se consigue añadiendo 3 filtros adicionales de color (uno rojo, uno verde, uno azul). Sin embargo, para la reproducción de varias tonalidades de color, se deben aplicar diferentes niveles de brillo intermedios entre luz y no-luz, lo cual se consigue con variaciones en el voltaje que se aplica a los filtros.
• Resolución: La resolución máxima de una pantalla LCD viene dada por el número de celdas de cristal líquido.
• Tamaño: A diferencia de los monitores CRT, se debe tener en cuenta que la medida diagonal de una pantalla LCD equivale al área de visión. Es decir, el tamaño diagonal de la pantalla LCD equivale a un monitor CRT de tamaño superior. Mientras que en un monitor clásico de 15" de diagonal de tubo sólo un máximo de 13,5" a 14" son utilizables, en una pantalla portátil de 15" son totalmente útiles.
En la actualidad coexisten varios tipos:


•Dual Scan (DSTN) : ya no muy utilizadas, razonablemente buenas pero dependen de las condiciones de iluminación del lugar donde se esté usando el portátil.


• HPA : una variante moderna de las anteriores, de contraste ligeramente superior, pero sólo ligeramente superior, sin duda peor que las TFT.

• Matriz Activa (TFT) : permite una visualización perfecta sean cuales sean las condiciones de iluminación exteriores.




2.2 Monitores con tubos de rayos catódicos :


Las señales digitales del entorno son recibidas por el adaptador de VGA. El adaptador lleva las señales a través de un circuito llamado convertidor analógico digital (DAC). Generalmente, el circuito de DAC está contenido dentro de un chip especial que realmente contiene tres DAC, uno para cada uno de los colores básicos utilizados en la visualización: rojo, azul y verde. Los circuitos DAC comparan los valores digitales enviados por la PC en una tabla que contiene los niveles de voltaje coincidentes con los tres colores básicos necesarios para crear el color de un único píxel. El adaptador envía señales a los tres cañones de electrones localizados detrás del tubo de rayos catódicos del monitor (CRT). Cada cañón de electrones expulsa una corriente de electrones, una cantidad por cada uno de los tres colores básicos.
El adaptador también envía señales a un mecanismo en el cuello del CRT que enfoca y dirige los rayos de electrones. Parte del mecanismo es un componente, formado por material magnético y bobinas, que abraza el cuello del tubo de rayos catódicos, que sirve para mandar la desviación de los haces de electrones, llamado yugo de desvío magnético. Las señales enviadas al yugo de ayuda determinan la resolución del monitor (la cantidad de píxeles horizontal y verticalmente) y la frecuencia de refresco del monitor, que es la frecuencia con que la imagen de la pantalla será redibujada.
La imagen esta formada por una multitud de puntos de pantalla, uno o varios puntos de pantalla forman un punto de imagen (píxel), una imagen se constituye en la pantalla del monitor por la activación selectiva de una multitud de puntos de imagen.
Los rayos pasan a través de los agujeros en una placa de metal llamada máscara de sombra o mascara perforada. El propósito de la máscara es mantener los rayos de electrones alineados con sus blancos en el interior de la pantalla de CRT. El punto de CRT es la medición de como cierran los agujeros unos a otros; cuanto más cerca estén los agujeros, más pequeño es el punto. Los agujeros de la mencionada máscara miden menos de 0,4 milímetros de diámetro.
El electrón golpea el revestimiento de fósforo dentro de la pantalla. (El fósforo es un material que se ilumina cuando es golpeado por electrones). Son utilizados tres materiales de fósforo diferentes, uno para cada color básico. El fósforo se ilumina más cuanto mayor sea el número de electrones emitido. Si cada punto verde, rojo o azul es golpeado por haces de electrones igualmente intensos, el resultado es un punto de luz blanca. Para lograr diferentes colores, la intensidad de cada uno de los haces es variada. Después de que cada haz deje un punto de fósforo, este continúa iluminado brevemente, a causa de una condición llamada persistencia. Para que una imagen permanezca estable, el fósforo debe de ser reactivado repitiendo la localización de los haces de electrones.
Después de que los haces hagan un barrido horizontal de la pantalla, las corrientes de electrones son apagadas cuando el cañón de electrones enfoca las trayectorias de los haces en el borde inferior izquierdo de la pantalla en un punto exactamente debajo de la línea de barrido anterior, este proceso es llamado refresco de pantalla.
Los barridos a través de la superficie de la pantalla se realizan desde la esquina superior izquierda de la pantalla a la esquina inferior derecha. Un barrido completo de la pantalla es llamado campo. La pantalla es normalmente redibujada, o refrescada, cerca de unas 60 veces por segundo, haciéndolo imperceptible para el ojo humano.

Según el color:

1. Monocromáticos Son los de blanco y negro, actualmente están casi extintos ya que poseen baja calidad de visualización y ofrece solo dos colores.

2. Policromáticos (A color) Se trata de la mayoría de los monitores existentes, de muchos colores y con una excelente calidad de visualización. Los monitores de plasma no dañan la vista y eso les hace superiores a los monitores a color normales.

Según la Tecnología:

1. Monitores CRT


Una pantalla de ordenador, o monitor, es el dispositivo periférico de salida más utilizado en los ordenadores. Su función es la de representar gráficamente la información con la que estamos trabajando. Se conecta al ordenador a través de una tarjeta gráfica, también denominada adaptador o tarjeta de vídeo.
El tubo catódico (CRT o Cathode Ray Tube en inglés), fue inventado por Karl Ferdinand Braun y a su desarrollo contribuyeron los trabajos de Philo Farnsworth.
Este componente es un dispositivo de visualización utilizado principalmente en pantallas de ordenadores, televisiones y osciloscopios, aunque en la actualidad se tiende a ir sustituyéndolo paulatinamente por tecnologías como plasma, LCD, DLP, etc.





Funcionamiento




El monitor es el encargado de traducir a imágenes las señales que provienen de la tarjeta gráfica. Su interior es similar al de un televisor convencional. La mayoría del espacio está ocupado por un tubo de rayos catódicos en el que se sitúa un cañón de electrones. Este cañón dispara constantemente un haz de electrones contra la pantalla, que está recubierta de fósforo (material que se ilumina al entrar en contacto con los electrones). En los monitores a color, cada punto o píxel de la pantalla está compuesto por tres pequeños puntos de fósforo: rojo, azul y verde. Iluminando estos puntos con diferentes intensidades, puede obtenerse cualquier color. Ésta es la forma de mostrar un punto en la pantalla, pero ¿cómo se consigue rellenar toda la pantalla de puntos? La respuesta es fácil: el cañón de electrones activa el primer punto de la esquina superior izquierda y, rápidamente, activa los siguientes puntos de la primera línea horizontal. Después sigue pintando y rellenando las demás líneas de la pantalla hasta llegar a la última y vuelve a comenzar el proceso. Esta acción es tan rápida que el ojo humano no es capaz de distinguir cómo se activan los puntos por separado, percibiendo la ilusión de que todos los píxels se activan al mismo tiempo.



2. Pantalla de Cristal Líquida o LCD:


LCD (Liquid Crystal Display) son las siglas en inglés de Pantalla de Cristal Líquido, dispositivo inventado por Jack Janning, quien fue empleado de NCR.

Se trata de un sistema eléctrico de presentación de datos formado por 2 capas conductoras transparentes y en medio un material especial cristalino (cristal líquido) que tienen la capacidad de orientar la luz a su paso.
Cuando la corriente circula entre los electrodos transparentes con la forma a representar (por ejemplo, un segmento de un número) el material cristalino se reorienta alterando su transparencia.
El material base de un LCD lo constituye el cristal líquido, el cual exhibe un comportamiento similar al de los líquidos y unas propiedades físicas anisotrópicas similares a las de los sólidos cristalinos. Las moléculas de cristal líquido poseen una forma alargada y son más o menos paralelas entre sí en la fase cristalina.
Según la disposición molecular y su ordenamiento, se clasifican en tres tipos: nemáticos, esméticos y colestéricos. La mayoría de cristales responden con facilidad a los campos eléctricos, exhibiendo distintas propiedades ópticas en presencia o ausencia del campo. El tipo más común de visualizador LCD es, con mucho, el denominado nemático de torsión, término que indica que sus moléculas en su estado desactivado presentan una disposición en espiral. La polarización o no de la luz que circula por el interior de la estructura, mediante la aplicación o no de un campo eléctrico exterior, permite la activación de una serie de segmentos transparentes, los cuales rodean al cristal líquido. Según sus características ópticas, pueden también clasificarse como: reflectivos, transmisivos y transreflectivos.





Ventajas y desventajas frente a los CRT


Ventajas:
Su tamaño.
Su menor consumo.
La pantalla no emite parpadeos.


Desventajas:
El costo.
El ángulo de visión.
La menor gama de los colores.
La pureza del color.



FUNCIONAMIENTO
El funcionamiento de estas pantallas se fundamenta en sustancias que comparten las propiedades de sólidos y líquidos a la vez. Cuando un rayo de luz atraviesa una partícula de estas sustancias tiene necesariamente que seguir el espacio vacío que hay entre sus moléculas como lo haría atravesar un cristal sólido pero a cada una de estas partículas se le puede aplicar una corriente eléctrica que cambie su polarización dejando pasar a la luz o no.
Una pantalla LCD esta formada por 2 filtros polarizados colocados perpendicularmente de manera que al aplicar una corriente eléctrica al segundo de ellos dejaremos pasar o no la luz que ha atravesado el primero de ellos. Para conseguir el color es necesario aplicar tres filtros más para cada uno de los colores básicos rojo, verde y azul y para la reproducción de varias tonalidades de color se deben aplicar diferentes niveles de brillo intermedios entre luz y no luz lo, cual consigue con variaciones en el voltaje que se aplicaba los filtros.




MONITORES PLASMA

Se basan en el principio de que haciendo pasar un alto voltaje por un gas a baja presión se genera luz. Estas pantallas usan fósforo como los CRT pero son emisivas como las LCD y frente a estas consiguen una gran mejora del color y un estupendo ángulo de visión.
Estas pantallas son como fluorescentes, y cada píxel es como una pequeña bombilla de color, el problema de esta tecnología es la duración y el tamaño de los píxeles, por lo que su implantación más común es en grandes pantallas de TV.
Están conformadas por miles y miles de píxeles que conforman la imagen, y cada píxel esta constituido por tres subpixeles, uno con fósforo rojo otro con verde y el último con azul, cada uno de estos subpixeles tienen un receptáculo de gas (una combinación de xenón, neón y otro gases).
Un par de electrodos en cada subpixel ioniza al gas volviéndolo plasma, generando luz ultravioleta que excita al fósforo que a su vez emite luz que en su conjunto forma una imagen.
Es por esta razón que se necesitaron 70 años para conseguir una nueva tecnología que pudiese conseguir mejores resultados que los CRT’s o cinescopios.



Características

El diseño de este tipo de productos permite q podamos colgarlo en la pared como si tratase de un cuadro. Las pantallas de plasma cuentan con un panel de celdas con las que consigue, mayores niveles de brillo y blancos mas puros, lo cual es una combinación que mejora los sistemas anteriores. Además, las imágenes son aun más nítidas, naturales y brillantes.
El gran inconveniente de estos productos es el precio el cual es demasiado elevado para el común de los usuarios.



CLASES DE MONITORES SEGUN SUS ESTANDARES


1. MONITORES MDA

Los monitores MDA por sus siglas en inglés “Monochrome Display Adapter” surgieron en el año 1981. Junto con la tarjeta CGA de IBM. Los MDA conocidos popularmente por los monitores monocromáticos solo ofrecían textos, no incorporaban modos gráficos.Este tipo de monitores se caracterizaban por tener un único color principalmente verde. El mismo creaba irritación en los ojos de sus usuarios.Características:* Sin modo gráfico.* Resolución 720_350 píxeles.* Soporte de texto monocromático.* No soporta gráfico ni colores.* La tarjeta gráfica cuenta con una memoria de vídeo de 4 KB.* Soporta subrayado, negrita, cursiva, normal, invisibilidad para textos.



2. MONITORES CGA


La Color Graphics Adapter (Adaptador de Gráficos en Color) o CGA, comercializada en 1981, fue la primera tarjeta gráfica en color de IBM (originalmente llamada "Color/Graphics Monitor Adapter"), y el primer estándar gráfico en color para el IBM PC.
Cuando IBM introdujo en el mercado su PC en 1981, el estándar CGA, a pesar de haber aparecido al mismo tiempo, era poco usado al principio, ya que la mayoría de los compradores adquirían un PC para uso profesional. Para juegos había otros ordenadores mucho más populares, y en aquella época no se consideraba que los gráficos en color tuvieran otro uso que el puramente lúdico. En consecuencia, muchos de los primeros compradores del PC optaron por la MDA (Monochrome Display Adapter), que sólo permitía la visualización de texto.
En 1982 se comercializó la Hercules Graphics Card, que permitía mostrar gráficos en monocromo a una resolución mucho mayor que la CGA, además de ser más compatible con la MDA, lo que perjudicó todavía más a las ventas de la CGA. Todo cambió en 1984 cuando IBM introdujo el PC AT y la Enhanced Graphics Adapter (EGA). Con ello, el precio de la antigua tarjeta CGA bajó considerablemente y se convirtió en una interesante alternativa de bajo coste, por lo que las nuevas empresas dedicadas a la fabricación de PCs clónicos la adoptaron rápidamente. Los PCs no-AT de bajo coste con tarjetas CGA se vendieron muy bien en los años siguientes, y como consecuencia muchos juegos fueron editados para ellos a pesar de sus limitaciones. La popularidad de la CGA comenzó a desaparecer cuando en 1987 la tarjeta VGA se convirtió en la nueva solución de alto nivel, relegando la EGA a los PCs de bajo coste.
La tarjeta estándar CGA de IBM incorporaba 16 kilobytes de VRAM, y permitía mostrar varios modos gráficos y de texto. La resolución máxima de cualquier modo era 640×200, y la mayor profundidad de color soportada era de 4 bits (16 colores). El modo más conocido, usado en la mayoría de los juegos CGA, mostraba 4 colores a una resolución de 320×200.
Aunque los 4 colores estaban considerados generalmente como el límite para la tarjeta CGA, era posible aumentar esa cantidad mediante varios métodos (algunos oficiales, otros no).




3. MONITOR EGA





EGA es el acrónimo inglés de Enhanced Graphics Adapter, el la especificación estándar de IBM PC para visualización de gráficos, situada entre CGA y VGA en términos de rendimiento gráfico (es decir, amplitud de colores y resolución). Introducida en 1984 por IBM para sus nuevos PC-AT, EGA tenía una profundidad de color de 16 colores y una resolution de hasta 640×350 píxels. La tarjeta EGA tenía 16 kilobytes de ROM para ampliar la de la BIOS con funciones adicionales e incluía el generador de direcciones de video Motorola MC6845.
A cada uno de los 16 colores se les podía asignar un color RGB de una paleta en el modo de alta resolución 640×350; EGA permitía escoger los colores de una paleta de 64 diferentes (dos bits por píxel para rojo, verde y azul). EGA también incluía la función completa de 16 colores de CGA en los modos gráficos de 640×200 y 320×200; sólo los colores 16 CGA/RGBI estaban disponibles en este modo. Los modos CGA orginales estaban presentes, pero EGA no era 100% compatible con CGA. EGA también podía controlar un monitor MDA ajustando los jumpers de la placa; sólo a 640×350.
La tarjeta IBM EGA básica incluía 64 kilobytes de memoria de vídeo, suficiente para controlar un monitor monocromo de alta resolución (y permitiendo todos los colores a 640×200 and 320×200 modes), si bien la mayoría de las tarjetas EGA y sus clones incluían 256 KB de memoria. Algunos clones de EGA de terceros fabricantes (principalmente las tarjetas de ATI Technologies y Paradise boards) incluían un rango de gráficos ampliado (por ejemplo, 640×400, 640×480 and 720×540), así como detección automática del monitor, y algunas un modo especial de 400 líneas para usar con monitores CGA.
El estándar EGA quedó obsoleto con la introducción del VGA por IBM en abril de 1987 con los ordenadores PS/2.



MONITOR VGA






El término Video Graphics Array (VGA) se refiere tanto a una pantalla de computadora analógica estándar, (conector VGA de 15 clavijas D subminiatura que se comercializó por primera vez en 1988 por IBM); como a la resolución 640 × 480. Si bien esta resolución ha sido reemplazada en el mercado de las computadoras, se está convirtiendo otra vez popular por los dispositivos móviles. VGA fue el último estándar de gráficos introducido por IBM al que la mayoría de los fabricantes de clones de PC se ajustaba, haciéndolo hoy (a partir de 2007) el mínimo que todo el hardware gráfico soporta antes de cargar un dispositivo específico. Por ejemplo, la pantalla de Microsoft Windows aparece mientras la máquina sigue funcionando en modo VGA, razón por la que esta pantalla aparecerá siempre con reducción de la resolución y profundidad de color. VGA fue oficialmente reemplazado por XGA estándar de IBM, pero en realidad ha sido reemplazada por numerosas extensiones clon ligeramente diferentes a VGA realizados por los fabricantes que llegaron a ser conocidas en conjunto como "Super VGA".





DETALLES TECNICOS



VGA que se denomina "matriz" (array) en lugar de "adaptador" (adapter), ya que se puso en práctica desde el inicio como un solo chip, en sustitución de los Motorola 6845 y docenas de chips de lógica discreta que cubren una longitud total de una tarjeta ISA que MDA, CGA y EGA utilizaban. Esto también permite que se coloquen directamente sobre la placa base del PC con un mínimo de dificultad (sólo requiere memoria de vídeo y un RAMDAC externo). Los primeros modelos IBM PS / 2 estaban equipados con VGA en la placa madre. Las especificaciones VGA son las siguientes:
-256 KB Video RAM
-Modos: 16-colores y 256-colores
-262144 valores de la paleta de colores (6 bits para rojo, verde y azul)
-Reloj maestro seleccionable de 25.2 MHz o 28.3
-Máximo de 720 píxeles horizontales
-Máximo de 480 líneas
-Tasa de refresco de hasta 70 Hz
-Interrupción vertical vacía (No todas las tarjetas lo soportan)
-Modo plano: máximo de 16 colores
-Modo pixel empaquetado: en modo 256 colores (Modo 13h)
-Soporte para hacer scrolling
-Algunas operacions para mapas de bits
-Barrel shifter
-Soporte para partir la pantalla
-0.7 V pico a pico
-75 ohm de impedancia (9.3mA - 6.5mW)
VGA soporta tanto los modos de todos los puntos direccionables como modos de texto alfanuméricos. Los modos estándar de gráficos son:
-640×480 en 16 colores
-640×350 en 16 colores
-320×200 en 16 colores
-320×200 en 256 colores (Modo 13h)
Tanto como los modos estándar, VGA puede ser configurado para emular a cualquiera de sus modos predecesores (EGA, CGA, and MDA).





PALETA DE COLORES VGA



El sistema de color VGA es compatible con los adaptadores EGA y CGA, y añade otro nivel de configuración en la parte superior. CGA fue capaz de mostrar hasta 16 colores, y EGA amplió éste permitiendo cada uno de los 16 colores que se elijan de una paleta de colores de 64 (estos 64 colores se componen de dos bits para el rojo, verde y azul: dos bits × tres canales = seis bits = 64 valores diferentes). VGA extiende aún más las posibilidades de este sistema mediante el aumento de la paleta EGA de 64 entradas a 256 entradas. Dos bloques de más de 64 colores con tonos más oscuros progresivamente se añadieron, a lo largo de 8 entradas "en blanco" que se fijaron a negro. Además de la ampliación de la paleta, a cada una de las 256 entradas se podía asignar un valor arbitrario de color a través de la DAC VGA. La BIOS EGA sólo permitió 2 bits por canal para representar a cada entrada, mientras que VGA permitía 6 bits para representar la intensidad de cada uno de los tres primarios (rojo, azul y verde). Esto proporcionó un total de 63 diferentes niveles de intensidad de rojo, verde y azul, resultando 262144 posibles colores, cualquiera 256 podrían ser asignado a la paleta (y, a su vez, de los 256, cualquiera 16 de ellos podrían ser mostradas en modos de vídeo CGA). Este método permitió nuevos colores que se utilizarán en los modos gráficos EGA y CGA, proporcionando un recordatorio de cómo los diferentes sistemas de paleta se establecen juntos. Para definir el texto de color a rojo muy oscuro en el modo de texto, por ejemplo, tendrá que ser fijado a uno de los colores CGA (por ejemplo, el color por defecto, n º 7: gris claro.) Este color luego se mapea a uno la paleta EGA - en el caso del color 7 de CGA, se mapea a la entrada 42 de EGA. El DAC VGA debe ser configurado para cambiar de color 42 a rojo oscuro, y luego de inmediato cualquier cosa que aparece en la pantalla a la luz de gris (color CGA 7) pasará a ser de color rojo oscuro. Esta función se utiliza a menudo en juegos DOS de 256 colores. Mientras que los modos CGA y EGA compatibles permitían 16 colores para ser mostrados de una vez, otros modos VGA, como el ampliamente utilizado modo 13h, permitía que las 256 entradas de la paleta se mostraran en la pantalla al mismo tiempo, y así en estos modos cualquier 256 colores podrían ser vistos de los 262144 colores disponibles.





MONITORES SVGA

Super Video Graphics Array o SVGA es un término que cubre una amplia gama de estándares de visualización gráfica de ordenadores, incluyendo tarjetas de video y monitores.

Puerto D-sub de 15 pines
Cuando IBM lanzara al mercado el estándar VGA en 1987 muchos fabricantes manufacturan tarjetas VGA clones. Luego, IBM se mueve y crea el estándar XGA, el cual no es seguido por las demás compañías, éstas comienzan a crear tarjetas gráficas SVGA.
Las nuevas tarjetas SVGA de diferentes fabricantes no eran exactamente igual a nivel de hardware, lo que las hacía incompatibles. Los programas tenían dos alternativas: Manejar la tarjeta de vídeo a través de llamadas estándar, lo cual era muy lento pero había compatibilidad con las diferentes tarjetas, o manejar la tarjeta directamente, lo cual era muy rápido y se podía acceder a toda la funcionalidad de ésta (modos gráficos, etc), sin embargo, el programador tenía que hacer una rutina de acceso especial para cada tipo de tarjeta.
Poco después surgió Video Electronics Standards Association (VESA), un consorcio abierto para promover la interoperabilidad y definición de estándares entre los diferentes fabricantes. Entre otras cosas, VESA unificó el manejo de la interface del programa hacia la tarjeta, también desarrolló un bus con el mismo nombre para mejorar el rendimiento entre el ordenador y la tarjeta. Unos años después, este bus sería sustituido por el PCI de Intel.
SVGA fue definido en 1989 y en su primera versión se estableció para una resolución de 800 × 600 pixels y 4 bits de color por pixel, es decir, hasta 16 colores por pixel. Después fue ampliado rápidamente a los 1024 × 768 pixels y 8 bits de color por pixel, y a otras mayores en los años siguientes.
Aunque el número de colores fue definido en la especificación original, esto pronto fue irrelevante, (en contraste con los viejos estándares CGA y EGA), ya que el interfaz entre la tarjeta de vídeo y el monitor VGA o SVGA utiliza voltajes simples para indicar la profundidad de color deseada. En consecuencia, en cuanto al monitor se refiere, no hay límite teórico al número de colores distintos que pueden visualizarse, lo que se aplica a cualquier monitor VGA o SVGA.
Mientras que la salida de VGA o SVGA es analógica, los cálculos internos que la tarjeta de vídeo realiza para proporcionar estos voltajes de salida son enteramente digital. Para aumentar el número de colores que un sistema de visualización SVGA puede producir, no se precisa ningún cambio en el monitor, pero la tarjeta vídeo necesita manejar números mucho más grandes y puede ser necesario rediseñarla desde el principio. Debido a esto, los principales fabricantes de chips gráficos empezaron a producir componentes para tarjetas vídeo del alta densidad de color apenas unos meses después de la aparición de SVGA.
Sobre el papel, el SVGA original debía ser sustituido por el estándar XGA o SXGA, pero la industria pronto abandonó el plan de dar un nombre único a cada estándar superior y así, casi todos los sistemas de visualización hechos desde finales de los 80 hasta la actualidad se denominan SVGA.
Los fabricantes de monitores anuncian a veces sus productos como XGA o SXGA, pero esto no tiene ningún significado, ya que la mayoría de los monitores SVGA fabricados desde los años 90 llegan y superan ampliamente el rendimiento de XGA o SXGA.


LIMPIEZA DE UN MONITOR

los CRT se pueden limpiar con cualquier cosa, pero los LCD son mas sensibles, ya que son porosos y pueden atrapar la suciedad y los liquidos que le apliquemos, en los manuales de instrucciones de los LCD pueden existir notas al respecto. Motodos para limpiar monitores de LCD:

Agua destilada y un paño que no suelte pelusas como los de limpiar las gafas, lijeramente humedecido.

Productos especificos para limpiar pantallas de LCD

Hay que tener en cuenta que existen 2 tipos de pantallas, mates y brillantescaso mire en el manual de instrucciones de la pantalla, como limpiarlo, o en su defecto al fabricante, ya que la limpieza de un monitor con productos no destinados a tal fin pueden dejar manchas en la pantalla de forma permanente.

martes, 5 de agosto de 2008

FUENTES LINEALES Y CONMUTADAS


Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación . Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (100-500 Kilociclos típicamente) entre corte (abiertos) y saturación (Cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos)y filtrados (Inductores y capacitores)para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuente.

CLASIFICACION

Las fuentes conmutadas pueden ser clasificadas en cuatro tipos:
alimentación de CA, salida CC: rectificador, conmutador, transformador, rectificador de salida, filtro
(Ej: fuente de alimentación de ordenador de mesa)
alimentación de CA, salida CA: conversor de frecuencia, conversor de voltaje.
(Ej, variador de motor)
alimentación de CC, salida CA: Inversor
(Ej: generar 220v/50ciclos a partir de una batería de 12v)
alimentación de CC, salida CC: conversor de voltaje o de corriente.
(Ej: cargador de baterías de celulares para auto).

COMPARACION ENTRE FUENTES CONMUTADAS Y LINEALES

-Tamaño y peso – las fuentes de alimentación lineales utilizan un transformador funcionando a la frecuencia de 50 o 60 hertzios. Este transformador de baja frecuencia es varias veces más grande y más pesado que un transformador correspondiente de fuente conmutada, el cual funciona en frecuencias típicas de 50 kilociclos a 1 megaciclo.La tendencia de diseño es de utilizar frecuencias cada vez mas altas mientras los transistores lo permitan para disminuir el tamaño de los componentes pasivos (capacitores inductores trasnformadores).
Voltaje de la salida – las fuentes de alimentación lineales regulan la salida usando un voltaje más alto en las etapas previas y luego disipando energía como calor para producir un voltaje más bajo, regulado. Esta caída de voltaje es necesaria y no puede ser eliminada mejorando el diseño. Las fuentes conmutadas pueden producir voltajes de salida que son más bajos que el voltaje de entrada, más altos que el voltaje e incluso inversos al voltaje de entrada, haciéndolos versátiles y mejor adaptables a voltajes de entrada variables.


-Eficiencia, calor, y energía disipada - Una fuente lineal regula el voltaje o la corriente de la salida disipando el exceso de energía como calor, lo cual es ineficaz. Una fuente conmutada usa la señal de control para variar el ancho de pulso, tomando de la alimentación solamente la energía requerida por la carga. En todas las topologías de fuentes conmutadas, se apagan y se encienden los transistores completamente. Así, idealmente, las fuentes conmutadas son 100% eficientes. El único calor generado se da por las características no ideales de los componentes. Pérdidas en la conmutación en los transistores, resistencia directa de los transistores saturados, resistencia serie equivalente en el inductor y los condensadores, y la caída de voltaje por el rectificador bajan la eficiencia. Sin embargo, optimizando el diseño, la cantidad de energía disipada y calor pueden ser reducidos al mínimo. Un buen diseño puede tener una eficiencia de conversión de 95%. Típicamente 75-85% en fuentes de entre 10-50W.Las fuentes conmutadas mas eficientes utilizan rectificación síncrona con transistores Mosfet saturados en el momento adecuado en vez de diodos.


-Complejidad - un regulador lineal consiste en última instancia un transistor de potencia, un CI de regulación de voltaje y un condensador de filtro de ruido। En cambio una fuente conmutada contiene típicamente un CI regulador, uno o varios transistores y diodos de potencia como así también un transformador, inductores, y condensadores de filtro. Múltiples voltajes se pueden generar a partir del mismo núcleo de transformador. Para ello se utiliza el control por ancho de pulso de entrada aunque las diferentes salidas pueden tener dificultades para la regulación de carga. Ambos necesitan una selección cuidadosa de sus transformadores. En las fuentes conmutadas debido al funcionamiento a altas frecuencias las perdidas en las pistas del circuito impreso por inductancia de perdida y las capacidades parásitas llegan a ser importantes.

-Interferencia por radiofrecuencia - La corriente en las fuentes conmutadas tiene cambios abruptos , y contiene una proporción grande de componentes espectrales de alta frecuencia। Cables o pistas largas entre los componentes pueden reducir la eficacia de alta frecuencia de los filtros a condensadores en la entrada y salida। Esta corriente de alta frecuencia puede generar interferencia electromagnética indeseable. Filtros EMI y blindajes de RF son necesarios para reducir la interferencia. Las fuentes de alimentación lineales no producen generalmente interferencia, y se utilizan para proveer de energía donde la interferencia de radio no debe ocurrir.
-Ruido electrónico en los terminales de salida de fuentes de alimentación lineales baratas con pobre regulación se puede experimentar un voltaje de CA Pequeño “montado” sobre la CC. de dos veces la frecuencia de alimentación (100/120 Ciclos). Esta “ondulación” (Ripple en Inglés) está generalmente en el orden de varios milivoltios, y puede ser suprimido con condensadores de filtro mas grandes o mejores reguladores de voltaje. Este voltaje de CA Pequeño puede causar problemas o interferencias en algunos circuitos; por ejemplo, cámaras fotográficas análogas de seguridad alimentadas con este tipo de fuentes pueden tener la modulación indeseada del brillo y distorsiones en el sonido que produce zumbido audible. Las fuentes de alimentación lineales de calidad suprimirán la ondulación mucho mejor. En cambio las Fuentes conmutadas no exhiben generalmente la ondulación en la frecuencia de la alimentación, sino salidas generalmente más ruidosas a altas frecuencias. El ruido está generalmente relacionado con la frecuencia de la conmutación.

-Ruido acústico - Las fuentes de alimentación lineales emiten típicamente un zumbido débil, en la baja frecuencia de alimentación, pero ésta es raramente audible (la vibración de las bobinas y las chapas del núcleo del transformador suelen ser las causas ). Las Fuentes conmutadas con su funcionamiento mucho más alto en frecuencia, no son generalmente audibles por los seres humanos (a menos que tengan un ventilador, como en la mayoría de las computadoras personales). El funcionamiento incorrecto de las fuentes conmutadas puede generar sonidos agudos, ya que genera ruido acústico en la frecuencia del oscilador.


-Factor de Potencia las Fuentes lineales tienen bajo factor de potencia porque la energía es obtenida en los picos de voltaje de la línea de alimentación.La corriente en las fuentes conmutadas simples no sigue la forma de onda del voltaje, sino que en forma similar a las fuentes lineales la energía es obtenida solo de la parte mas alta de la onda sinusoidal, por lo que su uso cada vez mas frecuente en computadoras personales y lámparas fluorescentes se constituyo en un problema creciente para la distribución de energía.Existen fuentes conmutadas con una etapa previa de corrección del factor de potencia que reduce grandemente este problema y son de uso obligatorio en algunos países particularmente europeos a partir de determinadas potencias.

-Ruido eléctrico sobre la línea de la alimentación principal puede aparecer ruido electrónico de conmutación que puede causar interferencia con equipos de A/V conectados en la misma fase. Las fuentes de alimentación lineares raramente presentan este efecto. Las fuentes conmutadas bien diseñadas poseen filtros a la entrada que minimizan la interferencia causada en la línea de alimentación principal.



PRUEBA Y PROTECCION DE FUENTES CONMUTADAS

Al reparar aparatos electrónicos con fuente conmutada (llamadas también popularmente: "swichadas", derivado de su denominación en Inglés: switched power supply), en muchos casos, encontramos que resulta necesario probarlas desligadas o desconectadas del resto del equipo, para verificar si funcionan correctamente y proporcionan los voltajes adecuados.Pero ... Cuidado !! , algunas fuentes de alimentación de este tipo, no pueden ponerse a funcionar en vacío, sin carga o consumo en su salida.Por otra parte, aunque se trate de una fuente que por su diseño, puede funcionar sin carga, probarla de esa manera no nos da la seguridad, de que mantendrá su funcionamiento y voltaje adecuado cuando esté conectada al resto del equipo.
Por ello, lo recomendable, es probarlas siempre con un consumo o carga adecuada, similar a la que tendrá durante su desempeño normal en el equipo del cual forma parte.
Se describe aquí, una alternativa sencilla, pero muy utilizada para la prueba de fuentes conmutadas, especialmente en Televisores y Monitores de PC de TRC (Tubo de Rayos Catódicos o Cinescopio).Básicamente, se trata de desconectar o eliminar, temporalmente el consumo en la línea de +B (o B+), que alimenta la etapa de salida horizontal (la de mayor consumo en TV y monitores), y conectar como carga o consumo, un bombillo (bombilla, lámpara, foco) incandescente de uso corriente para iluminación domestica y de potencia adecuada (ver la tabla más adelante).
En las Figuras 1 y 2, se muestran dos maneras de realizar esto.La primera (figura 1) se puede aplicar, tanto en TV y monitores de PC. Se desconecta o "abre" el circuito o línea de +B, se conecta el bombillo o foco, como se muestra en la imagen y se procede a encender la fuente. Si funciona, el bombillo encenderá y mediante el multímetro (tester) se podrá verificar si el voltaje es el correcto para esa fuente.
El segundo método (figura 2) es aplicable solamente en televisores. Se desconecta o retira el transistor de salida horizontal (HOT) y se conecta allí el bombillo, entre los puntos donde estaban conectados el Emisor y Colector de dicho transistor. Se procede a encender la fuente y medir el voltaje que entrega.Este método es práctico, cuando se ha encontrado el transistor de salida horizontal en corto. Al retirarlo, se puede realizar la prueba para verificar si la fuente funciona y si entrega el voltaje correcto, antes de instalar el nuevo transistor.


Consideraciones importantes

En algunos casos, puede ocurrir que al encender el equipo para realizar la prueba, aparezca el voltaje y el bombillo encienda, solo por unos segundos, para luego apagarse.Esto es normal en algunos equipos, en los que por su diseño, la fuente es controlada (ON-OFF) desde el microcontrolador. Ocurre que el "micro" vigila (entre otros) los circuitos de horizontal y/o vertical y al detectar que no funcionan, apaga el equipo. Lo cual es lógico que ocurra en esos casos, pues hemos desconectado temporalmente la etapa horizontal.Sin embargo, para los fines de la prueba, esos pocos segundos de encendido, son suficientes para verificar si el voltaje que entrega la fuente es del valor correcto, especificado en el diagrama o manual de servicio del equipo, lo que nos indicará que la fuente está funcionado correctamente.
Si el voltaje medido durante la prueba, es de un valor diferente del especificado para esa fuente, se debe buscar la causa y solucionarla antes de conectarla a los circuitos que debe alimentar. (una diferencia de menos del 5%, podría ser normal)
Este método de prueba no es aplicable a algunas fuentes conmutadas que utilizan "realimentación" o pulsos de referencia desde el Flyback, como ocurre en algunos modelos de TV Sharp. Sin embargo, funciona para la gran mayoría (más del 94%) de los TV y monitores.






ETAPAS DE LAS FUENTES


Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos:

En el primer bloque rectificamos y filtramos la tensión alterna de entrada convirtiéndola en una continua pulsante. El segundo bloque se encarga de convertir esa continua en una onda cuadrada de alta frecuencia (10 a 200 kHz.), La cual es aplicada a una bobina o al primario de un transformador. Luego el segundo bloque rectifica y filtra la salida de alta frecuencia del bloque anterior, entregando así una continua pura.
El cuarto bloque se encarga de comandar la oscilación del segundo bloque. Este bloque consiste de un oscilador de frecuencia fija, una tensión de referencia, un comparador de tensión y un modulador de ancho de pulso (PWM). El modulador recibe el pulso del oscilador y modifica su ciclo de trabajo según la señal del comparador, el cual coteja la tensión contínua de salida del tercer bloque con la tensión de referencia. Aclaración: ciclo de trabajo es la relación entre el estado de encendido y el estado de apagado de una onda cuadrada.
En la mayoría de los circuitos de fuentes conmutadas encontraremos el primer y el cuarto bloque como elementos invariables, en cambio el cuarto y en segundo tendrán diferentes tipos de configuraciones. A veces el cuarto bloque será hecho con integrados y otras veces nos encontraremos con circuitos totalmente transistorizados.
El segundo bloque es realmente el alma de la fuente y tendrá configuraciones básicas: BUCK , BOOST, BUCK-BOOST.



Buck: el circuito interrumpe la alimentación y provee una onda cuadrada de ancho de pulso variable a un simple filtro LC. La tensión aproximada es Vout = Vin * ciclo de trabajo y la regulación se ejecuta mediante la simple variación del ciclo de trabajo. En la mayoría de los casos esta regulación es suficiente y sólo se deberá ajustar levemente la relación de vueltas en el transformador para compensar las pérdidas por acción resistiva, la caída en los diodos y la tensión de saturación de los transistores de conmutación.

Bost: el funcionamiento es más complejo. Mientras el Buck almacena la energía en una bobina y éste entrega la energía almacenada más la tensión de alimentación a la carga.

Buck-Boost: los sistemas conocidos como Flyback son una evolución de los sistemas anteriores y la diferencia fundamental es que éste entrada a la carga sólo la energía almacenada en la inductancia। El verdadero sistema Boost sólo puede regular siendo Vout mayor que Vin, mientras que el Flyback puede regular siendo menor o mayor la tensión de salida que la de entrada.
En el análisis de los sistemas Boost comenzamos por saber que la energía que se almacena en la inductancia es entregada como una cantidad fija de potencia a la carga: Po = ( L I² fo) / 2 ; I es la corriente de pico en la bobina, fo es la frecuencia de trabajo, L es el valor de la inductancia. Este sistema entrega siempre una cantidad fija de potencia a la carga sin fijarse en la impedancia de la carga, por eso es que el Boost es muy usado en sistemas de flash fotográficos o en sistemas de ignición del automotor para recargar la carga capacitiva, también es usado como un muy buen cargador de baterías. Pero cuando necesitamos alimentar un sistema electrónico con carga resistiva debemos conocer muy bien el valor de resistencia para poder calcular el valor de la tensión de salida: Vo = ( Po.Rl )^½ = I ( ½ L fo Rl )^½, donde Rl es el valor de resistencia del circuito. En este caso la corriente de la bobina es proporcional al tiempo de conectado o al ciclo de trabajo del conmutador y la regulación para cargas fijas se realiza por variación del ciclo de trabajo.


CONFIGURACIONES BÁSICAS RECOMENDADAS

Las configuraciones más recomendadas por los fabricantes se diferencian en potencia, modo, precio, utilidad y calidad। Son muy comunes las siguientes configuraciones:

CIRCUITO - POTENCIA
Convertidores DC (Buck) - 5 Watts
Flyback - 50 Watts
Forward (Boost) - 100 Watts
Half-Bridge - 200 Watts
Full-Bridge - 500 Watts
FLYBACK Y FORWARD (BOOST):
Rango desde 50 hasta 250 vatios.
Variación del voltaje de entrada: Vin +10%, -20%
Eficiencia del convertidor: h = 80%
Regulación por variación del ciclo de trabajo: d(max) = 0.4
Máx. corriente de trabajo en el transistor:
Iw = 2 Pout / ( h d(max) Vin(min) 1.41 ) = 5.5 Pout / Vin (FLYBACK)
Iw = Pout / ( h d(max) Vin(min) 1.41 ) = 2.25 Pout / Vin (FORWARD)
Máx. tensión de trabajo del transistor: Vw = 2 Vin(max) 1.41 + tensión de protección.

Configuración básica:


En el regulador flyback se puede variar sutilmente el modo de trabajo, contínuo o discontinuo।
Modo Discontínuo: es el modo Boost estrictamente, donde la energía se vacía completamente del inductor antes de que el transistor vuelva a encenderse.
Modo Contínuo: antes que la bobina se vacié enciende nuevamente el transistor। La ventaja de este modo radica en que el transistor sólo necesita conmutar la mitad de un gran pico de corriente para entregar la misma potencia a la carga.


El regulador Forward difiere del Flyback en que agrega un diodo más para ser usado como diodo de libre rodado en el filtro LC y un devanado más en el transformador para lograr el reestablecimiento. Gracias a todo esto puede entregar potencia a la carga mientras el transistor está encendido. El ciclo de trabajo no puede superar el 50%.

PUSH-PULL:
Rango desde 100 hasta 500 vatios।
Variación del voltaje de entrada: Vin +10%, -20%
Eficiencia del convertidor: h = 80%
Regulación por variación del ciclo de trabajo: d(max) = 0.8
Máx. corriente de trabajo en el transistor:
Iw = Pout / ( h d(max) Vin(min) 1.41 ) = 1.4 Pout / Vin (FORWARD)
Máx. tensión de trabajo del transistor: Vw = 2 Vin(max) 1.41 + tensión de protección.



Configuración básica



HALF-BRIDGE:
Rango desde 100 hasta 500 vatios.
Variación del voltaje de entrada: Vin +10%, -20%
Eficiencia del convertidor: h = 80%
Regulación por variación del ciclo de trabajo: d(max) = 0.8
Máx. corriente de trabajo en el transistor:
Iw = 2 Pout / ( h d(max) Vin(min) 1.41 ) = 2.8 Pout / Vin (FORWARD)
Máx. tensión de trabajo del transistor: Vw = Vin(max) 1.41 + tensión de protección




Configuración básica:





Opcionalmente agregando un capacitor de acoplamiento:


FULL-BRIDGE:
Rango desde 500 hasta 1000 vatios.
Variación del voltaje de entrada: Vin +10%, -20%
Eficiencia del convertidor: h = 80%
Regulación por variación del ciclo de trabajo: d(max) = 0.8
Máx. corriente de trabajo en el transistor:
Iw = Pout / ( h d(max) Vin(min) 1.41 ) = 1.4 Pout / Vin (FORWARD)
Máx. tensión de trabajo del transistor: Vw = Vin(max) 1.41 + tensión de protección.

Configuración básica:





Fuentes conmutadas vs fuentes lineales

Básicamente existen dos formas de realizar una fuente de alimentación regulada.
Una de ellas consiste en hacer una fuente que entregue mayor tensión de la requerida a la salida. Entre la fuente y la carga se coloca un dispositivo regulador que no hace otra cosa que disminuir la tensión de la fuente hasta un valor deseado manteniéndolo constante. Para lograr esto, se utilizan transistores que trabajan como resistencias variables. De esta manera, parte de la potencia de la fuente llega a la carga y parte se transforma en calor que se disipa luego en el aire.
A estos dispositivos se los denomina reguladores lineales y se caracterizan por generar bastante calor para potencias medianas y altas (figura 1)।

Otro tipo de reguladores son capaces de tomar de la fuente sólo la potencia que la carga requiere. De esta manera, prácticamente no hay potencia disipada en forma de calor y por ello su eficiencia es mucho mayor.
El principio de funcionamiento de estos reguladores consiste en transformar la tensión continua de la fuente en una serie de pulsos que tienen un ancho determinado. Estos pulsos son luego integrados y transformados nuevamente en una tensión continua. Variando el ancho de los pulsos es posible controlar la tensión de salida. A los reguladores que emplean este principio se los denomina reguladores conmutados (figura 2).


Como podrán imaginar la complejidad circuital de los reguladores conmutados había relegado su uso, hasta no hace mucho tiempo, al campo de las altas potencias o aplicaciones especiales. Sin embargo ahora se cuenta con circuitos integrados que facilitan y reducen los costos de este tipo de reguladores con lo cual su uso se ha extendido enormemente en los últimos años.