martes, 22 de julio de 2008

ELECTRICIDAD

El término electricidad deriva del Griego "electrón", que significa "ámbar" (el filósofo Griego Tales de Mileto, se dió cuenta de que al frotar una varilla de ámbar con lana o piel, se creaba una atracción hacia otros cuerpos en la vecindad, e incluso se producían chispas). Este término se aplica a toda la variedad de fenómenos resultantes de la presencia y flujo de una corriente eléctrica. Ahora si, para explicar adecuadamente la mayoría de los fenómenos asociados además se debe incluir al magnetismo, lo que lleva al estudio del electromagnetismo; de esta manera podemos entender los campos magnéticos, los rayos que tanto destacan en las tormentas, y toda la gama de aplicaciones industriales que conocemos en la actualidad.

La energía que encierra la electricidad proviene de unas de las partículas más pequeñas conocidas por la ciencia: los electrones, que poseen una carga eléctrica negativa.
Toda la materia está formada por átomos, y los átomos están formados por partículas más pequeñas: protones, neutrones y electrones. Algunos tipos de átomos tienen electrones que están menos "apegados" al núcleo. Esto quiere decir que fácilmente pueden ser movilizados de un átomo a otro. Cuando los electrones se mueven entre los átomos de la materia, se produce una corriente de electricidad. Esto es lo que sucede cuando los electrones (en rojo, en la figura) circulan por un trozo de alambre.
Algunos elementos son mejores conductores que otros. Esto se relaciona con la capacidad de los electrones de los átomos de esa materia, de movilizarse de un lugar a otro. A esta capacidad se le llama resistencia de un material. A menor resistencia, mejor conductor de electricidad es el elemento. El cobre es un excelente metal conductor de electricidad, ya que su resistencia es baja.
La pilas y baterías contienen energía química almacenada. Cuando las sustancias químicas al interior de las pila reaccionan unas con otras, producen una carga eléctrica. Esta carga se transforma en energía eléctrica cuando la batería o pila se conecta en un circuito.
La electricidad produce calor. Cuando fluye, la resistencia causa fricción, y la fricción provoca calor. Mientras mayor sea la resistencia de un elemento, más caliente puede ponerse. Ese principio es el que utilizan, por ejemplo, las estufas eléctricas de radiación, los secadores de pelo o los calentadores de agua.
Otro tipo de energía eléctrica es la electricidad estática. Al contrario de la corriente eléctrica, que se mueve, la electricidad estática se mantiene en un lugar y consiste en los átomos que se traspasan de un elemento a otro, sin moverse.

La importancia de la electricidad radica en que es una de las principales formas de energía usadas en el mundo actual. Sin ella la iluminación, comunicación, teléfono, radio, no existiría y las personas que tuvieran que prescindir de aparatos eléctricos que ya llegaron a constituir parte integrante del hogar. Además sin la electricidad el campo del transporte no sería lo que es en la actualidad. De hecho puede decirse que la electricidad se usa en todas partes.

DE DONDE VIENE LA ELECTRICIDAD ?

La electricidad que nosotros consumimos, y que se transporta a través de una red de cables, se produce básicamente al transformar la energía cinética en energía eléctrica. Para ello, se utilizan turbinas y generadores. Las turbinas son enormes engranajes que rotan sobre sí mismos una y otra vez, impulsados por una energía externa. Los generadores son aparatos que transforman la energía cinética -de movimiento- de una turbina, en energía eléctrica.
Existen dos tipos principales de centrales generadoras de electricidad:
Hidroeléctricas y termoeléctricas (térmicas a vapor, térmicas a gas y de ciclo combinado).

CENTRALES HIDROELÉCTRICAS:
utilizan la fuerza y velocidad del agua corriente para hacer girar las turbinas. Las hay de dos tipos: de pasada (que aprovechan la energía cinética natural del agua corriente de los ríos) y de embalse (el agua se acumula mediante represas, y luego se libera con mayor presión hacia la central hidroeléctrica).

CENTRALES TERMOELÉCTRICAS:

usan el calor para producir electricidad. Calientan una sustancia, que puede ser agua o gas, los cuales al calentarse salen a presión y mueven turbinas y entonces el movimiento se transforma. Como ya hemos visto, para alimentar una central termoeléctrica se pueden usar muchas fuentes energéticas: carbón, petróleo, gas natural, energía solar, geotérmica o nuclear, biomasa... Estas son las utilizadas principalmente en Chile:

1. CENTRALES TÉRMICAS A VAPOR. En este caso, se utiliza agua en un ciclo cerrado (siempre es la misma agua). El agua se calienta en grandes calderas, usando como combustible el carbón, gas, biomasa, etc. La turbina se mueve debido a la presión del vapor de agua, y su energía cinética es transformada en electricidad por un generador.

2. CENTRALES TÉRMICAS A GAS. En vez de agua, estas centrales utilizan gas, el cual se calienta utilizando diversos combustibles (gas, petróleo o diesel). El resultado de esta combustión es que gases a altas temperaturas movilizan a la turbina, y su energía cinética es transformada en electricidad.

3. CENTRALES DE CICLO COMBINADO. Utilizan dos turbinas, una a gas y otra a vapor. El gas calentado moviliza a una turbina y luego calienta agua, la que se transforma en vapor y moviliza, a su vez, a una segunda turbina.

TERMINOS

Voltio:Es la unidad de fuerza que impulsa a las cargas eléctricas a que puedan moverse a través de un conductor. Su nombre, voltio, es en honor al físico italiano, profesor en Pavia, Alejandro Volta quien descubrió que las reacciones químicas originadas en dos placas de zinc y cobre sumergidas en ácido sulfúrico originaban una fuerza suficiente para producir cargas eléctricas.

Ohmio:Unidad de medida de la Resistencia Eléctrica. Y equivale a la resistencia al paso de electricidad que produce un material por el cual circula un flujo de corriente de un amperio, cuando está sometido a una diferencia de potencial de un voltio.

Amperio: Unidad de medida de la corriente eléctrica, que debe su nombre al físico francés André Marie Ampere, y representa el número de cargas (coulombs) por segundo que pasan por un punto de un material conductor. (1Amperio = 1 coulomb/segundo).

Faradio: Es la unidad de capacidad. Básicamente dice la cantidad de carga que puede tener un condensador cuando pasa un cierto voltaje a través de el. Esto te dice cuanta corriente fluye de al, y por cuanto tiempo, cuando pasa a través de distintos tamaños de resistencias.
Un faradio es extremadamente grande. Un condensador de papel normal que tenga un faradio podrá ser tan grande como tu cocina - sobre todo si es del tipo de alto voltaje. Normalmente usamos condensadores mucho más pequeños - generalmente no son más grandes que un microfaradio. Un microfaradio es un millonésimo de un faradio. En muchos circuitos se usan condensadores mucho más pequeños. Estos son nanofaradios y picofaradios Trillonesimas de un faradio). Un picofaradio se llama a veces un micro-micro faradio, y se escribe xxx F, aunque es mejor escribir pF. Un nanofaradio, se escribe nF.

ELECTRONICA

La electrónica es el campo de la ingeniería y de la física aplicada relativo al diseño y aplicación de dispositivos, por lo general circuitos electrónicos, cuyo funcionamiento depende del flujo de electrones para la generación, transmisión, recepción, almacenamiento de información, entre otros. Esta información puede consistir en voz o música como en un receptor de radio, en una imagen en una pantalla de televisión, o en números u otros datos en un ordenador o computadora. Los circuitos electrónicos ofrecen diferentes funciones para procesar esta información, incluyendo la amplificación de señales débiles hasta un nivel que se pueda utilizar; el generar ondas de radio; la extracción de información, como por ejemplo la recuperación de la señal de sonido de una onda de radio (demodulación); el control, como en el caso de introducir una señal de sonido a ondas de radio (modulación), y operaciones lógicas, como los procesos electrónicos que tienen lugar en las computadoras.




RESISTENCIA





Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica para circular a través de dicha sustancia. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula (Ω), y se mide con el Ohmímetro. Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia. Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nula.



COMO MEDIR UNA RESISTENCIA

Para medir un resistor / resistencia se selecciona, en el multímetro que estemos utilizando, la unidad (ohmios). Revisar que los cables rojo y negro estén conectados correctamente.
Se selecciona la escala adecuada, si tiene selector de escala (si no tenemos idea de que magnitud de la resistencia que vamos a medir, escoger la escala más grande).
Si no tiene selector de escala seguramente el multímetro escoge la escala automáticamente.
Para medir una resistencia con el multímetro, éste tiene que ubicarse con las puntas en los extremos del elemento a medir (en paralelo) y se obtiene la lectura en la pantalla.
Lo ideal es que el elemento a medir (una resistencia en este caso) no esté alimentado por ninguna fuente de voltaje (V). El ohmímetro hace circular una corriente I por la resistencia para poder obtener el valor de la ésta.



COMO SABER EL VALOR DE LAS RESISTENCIAS


Para saber el valor de la resistencia proporcionada, se sigue un código de colores impreso en el componente en forma de bandas.

Pueden existir 3, 4 o 5 bandas dependiendo del modelo de resistor, el conjunto de bandas cercanas determinan la resistencia y la banda del extremo opuesto determina la tolerancia (generalmente esta banda es dorada o plateada).Es muy fácil obtener el valor de una resistencia, para ello usaremos la siguiente tabla,


que utilizaremos al resolver los siguientes ejemplos : Donde Ω = OhmiokΩ = Kilohmio (1 kΩ es igual a 1000 ohmios).MΩ = Megaohmio (1 MΩ es igual a 1 000 000 de ohmios ó 1 000 kiloohmios).




CONDENSADOR






El condensador es uno de los componentes mas utilizados en los circuitos eléctricos. Un condensador es un componente pasivo que presenta la cualidad de almacenar energía eléctrica. Esta formado por dos laminas de material conductor (metal) que se encuentran separados por un material dieléctrico (material aislante). En un condensador simple, cualquiera sea su aspecto exterior, dispondrá de dos terminales, los cuales a su vez están conectados a las dos laminas conductoras.



COMO PROBAR CAPACITORES

Existen 3 maneras de comprobar que un capacitor funciona correctamente:

Metodo de Corto Circuito: Esta forma de probar el capacitor es la mas sencilla que existe, ya que no necesita de ningun aparato o instrumento. La forma para probar el capacitor es la siguiente: Se le aplica un voltaje de 127 volts, por un tiempo de no mas de 6 segundos y despues se retira la alimentacion, despues se procedera a poner en corto circuito las dos terminales del capacitor, si al momento de ponerlas en corto circuito, este produce una chispa de color azul, quiere decir que este funciona correctamente y el capacitor se encuentra en buen estado; si la chispa que despide es naranja quiere decir que el capacitor funciona medianamente o que su capacidad esta disminuida; y si no se procuce chispa alguna el aparato no sirve. Cabe señalar que este es un metodo muy seguro y eficaz y el mismo no corre riesgo alguno con este metodo.

Metodo del Multimetro:Para probar que un capacitor esta en buen estado, se utiliza un ohmetro o un multimetro analogico, el multimetro en escala de resistencia y sus dos termilas se concetan con las terminales del capacitor, la aguja del multimetro nos marcara un valor. Este valor sera la carga del capacitor, despues la aguja comenzara a descender lentamente, marcando la tendencia del capacitor. Si el multimetro no marca carga significa que no se encuentra en buen estado.

Metodo de LCR:Otra forma de probar un capacitor es con un medidor LCR. La forma es la siguiente: Se selecciona en el instrumento el dispositivo a medir (en este caso es un capacitor), y las 2 terminales se ponen en contacto con el capacitor, en ese instante nos dara el valor de su capacitancia.


TRANSFORMADOR



Dispositivo eléctrico que consta de una bobina de cable situada junto a una o varias bobinas más, y que se utiliza para unir dos o más circuitos de corriente alterna (CA) aprovechando el efecto de inducción entre las bobinas. La bobina conectada a la fuente de energía se llama bobina primaria. Las demás bobinas reciben el nombre de bobinas secundarias. Un transformador cuyo voltaje secundario sea superior al primario se llama transformador elevador. Si el voltaje secundario es inferior al primario este dispositivo recibe el nombre de transformador reductor. El producto de intensidad de corriente por voltaje es constante en cada juego de bobinas, de forma que en un transformador elevador el aumento de voltaje de la bobina secundaria viene acompañado por la correspondiente disminución de corriente. La cantidad de terminales varía según cuantos bobinados y tomas tenga. Como mínimo son tres para los auto- transformadores y cuatro en adelante para los transformadores. No tienen polaridad aunque si orientación magnética de los bobinados.




DIODO


Componente electrónico que permite el paso de la corriente en un solo sentido. Los primeros dispositivos de este tipo fueron los diodos de tubo de vacío, que consistían en un receptáculo de vidrio o de acero al vacío que contenía dos electrodos: un cátodo y un ánodo. Ya que los electrones pueden fluir en un solo sentido, desde el cátodo hacia el ánodo, el diodo de tubo de vacío se podía utilizar en la rectificación. Los diodos más empleados en los circuitos electrónicos actuales son los diodos fabricados con material semiconductor. El más sencillo, el diodo con punto de contacto de germanio, se creó en los primeros días de la radio, cuando la señal radiofónica se detectaba mediante un cristal de germanio y un cable fino terminado en punta y apoyado sobre él. En los diodos de germanio (o de silicio) modernos, el cable y una minúscula placa de cristal van montados dentro de un pequeño tubo de vidrio y conectados a dos cables que se sueldan a los extremos del tubo.














DIODO RECTIFICADOR


Este diodo, como el de tubo es un rectificador, tiene una amplia cobertura de usos, aunque con diferentes tamaños y características, dependiendo de la sección y función que vaya a llevar a cabo, en esencia es, rectificar señales, ya sea eliminando el componente de radiofrecuencia, en este casousado como detector, o en las salidas de audio; también los vemos en las fuentes de alimentación encargados de rectificar la corriente alterna, ya se que provenga de un transformador o directamente de la red eléctrica.




DIODO LED


Light Emitting Diode, diodo emisor de luz, que al ser polarizado directamente emite luz, llamada incoherente en un espectro reducido, están clasificados dentro de los semiconductores y estan formados por una juntura PN. Existen en color rojo, verde, amarillo e infrarrojos; para que un led funcione necesita apenas unos 20 mA., noes el caso de las lámparas incandescentes y las neón, que se usan como pilotos en equipos variados. Los leds de alguna forma están desplazando en uso de estas lámparas, gracias a su consumo mínimo.
Los leds se pueden sin problemas conectar a cualquier voltaje, únicamente se les tiene que agregar un resistor limitador, en caso de corriente alterna es necesario agregar un diodo rectificador además del resistor. Para calcular el resistor debes de dividir el voltaje dentro de 0.02.




DIODO ZENER





Si aplicamos voltajes bajos a un zener, se comportará como cualquier diodo rectificador, toda vez que el voltaje supere cierto nivel, el diodo entra en avalancha (conducción de corriente en sentido inverso) y conduce en ambas direcciones.
Voltaje de ruptura o zener es el nombre dado al voltaje en el cual el diodo entra en avalancha. Estos diodos son utilizados en el diseño de fuentes de alimentación para, fijar un voltaje, es decir, si necesitamos en una fuente 5 voltios, colocamos un zener con este voltaje y siempre se mantendrá, para esto también se necesita un resistor que limite la corriente al diodo; también pueden usarse en el diseño de osciladores por relajación.
Cabe también decir que los zener disipan corriente en forma de calor, tomando en cuenta que oponen cierta resistencia al paso de la corriente.El nombre que reciben estas resistencias es “limitadoras”.Para saber que diodo zener necesitas esta es la fórmula: WATTS = V x I = R x I x IEn este caso I es la intensidad, la cual resulta de restar el voltaje zener del máximo voltaje de la fuente y dividir por el valor en ohmios de la resistencia limitadora.




DIODO VARICAP



Diodo de capacidad variable, esto es el diodo varicap, también llamado Varactor. Este diodo forma una capacidad en los extremos de la union PN, que resulta de utilidad, cuando se busca utilizar esa capacidad en provecho del circuito en el cual debe de funcionar el diodo.
Cuando polarizamos un varicap de forma directa, observamos que además de las zonas constitutivas de la capacidad que buscamos, en paralelo con ellas aparece una resistencia de muy bajo valor óhmico, conformando con esto un capacitor de pérdidas muy elevadas. En cambio si lo polarizamos en sentido inverso, la resistencia en paralelo mencionada, es de un valor relativamente alto, dando como resultado que el diodo se comporte como un capacitor de pérdidas bajas.





FOTODIODO




Un Foto Diodo hace lo inverso a un diodo led, para funcionar necesita luz, es parecido a una fotocelda o fotoresistor, que funciona en relación a la cantidad de luz que recibe; a diferencia que el foto diodo, responde a mayor velocidad con respecto a la oscuridad y luz. Se utilizan en el desarrollo de alarmas, juguetes, etc.



DIODO LASER







El diodo láser es un dispositivo semiconductor similar a los diodos LED pero que bajo las condiciones adecuadas emite luz láser. A veces se los denomina diodos láser de inyección, o por sus siglas inglesas LD o ILD.


COMO PROBAR DIODOS



Hoy en día existen multímetros (VOM) digitales que permiten probar con mucha facilidad un diodo, pues ya vienen con esta alternativa listos de fábrica.El caso que se presenta aquí es el método típico de medición de un diodo con un tester analógico (el que tiene una aguja)Para empezar, se coloca el selector para medir resistencias (ohmios / ohms), sin importar de momento la escala.Se realizan las dos pruebas siguientes:
- Se coloca el cable de color rojo en el ánodo de diodo (el lado de diodo que no tiene la franja) y el cable de color negro en el cátodo (este lado tiene la franja), el propósito es que el multímetro inyecte una corriente continua en el diodo (esto es lo que hace cuando mide resistencias). Si la resistencia que se lee es baja indica que el diodo, cuando está polarizado en directo funciona bien y circula corriente a través de él (como debe de ser). Si esta resistencia es muy alta, puede ser síntoma de que el diodo está "abierto" y tenga que ser reemplazado.
- Se coloca el cable de color rojo en el cátodo y el cable negro en el ánodo. En este caso como en anterior el propósito es hacer circular corriente a través del diodo, pero ahora en sentido opuesto a la flecha de este. Si la resistencia leída es muy alta, esto nos indica que el diodo se comporta como se esperaba, pues un diodo polarizado en inverso casi no conduce corriente. Si esta resistencia es muy baja podría significar que el diodo esta en "corto" y tenga que ser reemplazado.
Nota:- El cable rojo debe ir conectado al terminal del mismo color en el multímetro- El cable negro debe ir conectado al terminal del mismo color en el multímetro (el común / common).



FUSIBLE







Dispositivo de seguridad utilizado para proteger un circuito eléctrico de un exceso de corriente. Su componente esencial es, habitualmente, un hilo o una banda de metal que se derrite a una determinada temperatura. El fusible está diseñado para que la banda de metal pueda colocarse fácilmente en el circuito eléctrico. Si la corriente del circuito excede un valor predeterminado, el metal fusible se derrite y se rompe o abre el circuito. Los dispositivos utilizados para detonar explosivos también se llaman fusibles. Un fusible cilíndrico está formado por una banda de metal fusible encerrada en un cilindro de cerámica o de fibra. Unos bornes de metal ajustados a los extremos del fusible hacen contacto con la banda de metal. Este tipo de fusible se coloca en un circuito eléctrico de modo que la corriente fluya a través de la banda metálica para que el circuito se complete. Si se da un exceso de corriente en el circuito, la conexión de metal se calienta hasta su punto de fusión y se rompe. Esto abre el circuito, detiene el paso de la corriente y, de ese modo, protege al circuito.



TRANSISTORES





PNPNPN



Los transistores se componen de semiconductores. Se trata de materiales, como el silicio o el germanio, dopados (es decir, se les han incrustado pequeñas cantidades de materias extrañas), de manera que se produce un exceso o una carencia de electrones libres. En el primer caso, se dice que el semiconductor es del tipo n, y en el segundo, que es del tipo p. Combinando materiales del tipo n y del tipo p se puede producir un diodo. Cuando éste se conecta a una batería de manera tal que el material tipo p es positivo y el material tipo n es negativo, los electrones son repelidos desde el terminal negativo de la batería y pasan, sin ningún obstáculo, a la región p, que carece de electrones. Con la batería invertida, los electrones que llegan al material p pueden pasar sólo con muchas dificultades hacia el material n, que ya está lleno de electrones libres, en cuyo caso la corriente es prácticamente cero.



COMO PROBAR UN TRANSISTOR



Para probar transistores bipolares hay que analizar un circuito equivalente de éste, en el que se puede utilizar lo aprendido al probar diodos.

los circuitos equivalentes de los transistores bipolares NPN y PNP están compuestos por diodos y se sigue la misma técnica que probar diodos comunes.
La prueba se realiza entre el terminal de la base (B) y el terminal E y C. Los métodos a seguir en el transistor NPN y PNP son opuestos.
Al igual que con el diodo, si uno de estos "diodos del equivalentes del transistor" no funcionan cono se espera hay que cambiar el transistor.



TRANSISTORES FET



El transistor de efecto campo (Field-Effect Transistor o FET, en inglés) es en realidad una familia de transistores que se basan en el campo eléctrico para controlar la conductividad de un "canal" en un material semiconductor. Los FET, como todos los transistores, pueden plantearse como resistencias controladas por voltaje.
La mayoría de los FET están hechos usando las técnicas de procesado de semiconductores habituales, empleando la oblea monocristalina semiconductora como la región activa o canal. La región activa de los TFTs (thin-film transistores, o transistores de película fina), por otra parte, es una película que se deposita sobre un sustrato (usualmente vidrio, puesto que la principal aplicación de los TFTs es como pantallas de cristal líquido o LCDs).

P-channel




N-channel



Símbolos esquemáticos para los JFETs canal-n y canal-p. G=Puerta(Gate), D=Drenador(Drain) y S=Fuente(Source).
Los transistores de efecto de campo o FET más conocidos son los JFET (Junction Field Effect Transistor), MOSFET (Metal-Oxide-Semiconductor FET) y MISFET (Metal-Insulator-Semiconductor FET).
Tienen tres terminales, denominadas puerta (gate), drenador (drain) y fuente (source). La puerta es el terminal equivalente a la base del BJT. El transistor de efecto de campo se comporta como un interruptor controlado por tensión, donde el voltaje aplicado a la puerta permite hacer que fluya o no corriente entre drenador y fuente.
El funcionamiento del transistor de efecto de campo es distinto al del BJT. En los MOSFET, la puerta no absorbe corriente en absoluto, frente a los BJT, donde la corriente que atraviesa la base, pese a ser pequeña en comparación con la que circula por las otras terminales, no siempre puede ser despreciada. Los MOSFET, además, presentan un comportamiento capacitivo muy acusado que hay que tener en cuenta para el análisis y diseño de circuitos.
Así como los transistores bipolares se dividen en NPN y PNP, los de efecto de campo o FET son también de dos tipos: canal n y canal p, dependiendo de si la aplicación de una tensión positiva en la puerta pone al transistor en estado de conducción o no conducción, respectivamente. Los transistores de efecto de campo MOS son usados extensísimamente en electrónica digital, y son el componente fundamental de los circuitos integrados o chips digitales.

Historia


Desde 1953 se propuso su fabricación por Van Nostrand (5 años después de los BJT). Aunque su fabricación no fue posible hasta mediados de los años 60's.

Tipo de transistores de efecto campo

El canal de un FET es dopado para producir tanto un semiconductor tipo N o uno tipo P. El drenador y la fuente deben estar dopados de manera contraria al canal en el caso de FETs de modo mejorado, o dopados de manera similar al canal en el caso de FETs en modo agotamiento. Los transistores de efecto de campo también son distinguidos por el método de aislamiento entre el canal y la puerta. Los tipos de FETs son: Podemos clasificar los transistores de efecto campo según el método de aislamiento entre el canal y la puerta:

El MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) usa un aislante (normalmente SiO2).

El JFET (Junction Field-Effect Transistor) usa una unión p-n

El MESFET (Metal-Semiconductor Field Effect Transistor) substituye la unión PN del JFET con una barrera Schottky.

En el HEMT (High Electron Mobility Transistor), también denominado HFET (heterostructure FET), la banda de material dopada con "huecos" forma el aislante entre la puerta el cuerpo del transistor.

Los MODFET (Modulation-Doped Field Effect Transistor)

Los IGBT (Insulated-gate bipolar transistor) es un dispositivo para control de potencia. Son comunmente usados cuando el rango de voltaje drenaje-fuente está entre los 200 a 3000V. Aún así los Power MOSFET todavía son los dispositivos más utilizados en el rango de tensiones drenaje-fuente de 1 a 200V.

Los FREDFET es un FET especializado diseñado para otorgar una recuperación ultra rápida del transistor.

Los DNAFET es un tipo especializado de FET que actúa como biosensor, usando una puerta fabricada de moléculas de ADN de una cadena para detectar cadenas de ADN iguales
. La característica de los TFT que los distingue, es que hacen uso del silicio amorfo o del silicio policristalino.

Características

Tiene una resistencia de entrada extremadamente alta (casi 100M).
No tiene un voltaje de unión cuando se utiliza Conmutador (Interruptor).
Hasta cierto punto inmune a la radiación.
Es menos ruidoso.
Puede operarse para proporcionar una mayor estabilidad térmica


COMO MEDIR TRANSISTORES FET

La única prueba que se le puede hacer a estos transistores es medir la resistencia entre sus terminales fuente (S, source) y surtidor (D, drain) la cual debe ser de unos pocos ohmios. Hay que tener cuidado al probarlos ya que debido a su alta impedancia de entrada y a su sensibilidad a la estática, se pueden dañar al manipularlos.

CIRCUITOS INTEGRADOS



La mayoría de los circuitos integrados son pequeños trozos, o chips, de silicio, de entre 2 y 4 mm2, sobre los que se fabrican los transistores. La fotolitografía permite al diseñador crear centenares de miles de transistores en un solo chip situando de forma adecuada las numerosas regiones tipo n y p. Durante la fabricación, estas regiones son interconectadas mediante conductores minúsculos, a fin de producir circuitos especializados complejos. Estos circuitos integrados son llamados monolíticos por estar fabricados sobre un único cristal de silicio. Los chips requieren mucho menos espacio y potencia, y su fabricación es más barata que la de un circuito equivalente compuesto por transistores individuales.


CIRCUITO ELECTRICO





Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas.



POTENCIA ELECTRICA



Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”.Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica.La unidad de medida de la potencia eléctrica “P” es el “watt”, y se representa con la letra “W”.




TENSION Y VOLTAJE



Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico, también podemos decir que es la energía capaz de poner en movimiento los electrones libres de un conductor o semiconductor. La unidad de este parámetro es el voltio (V), existen dos tipos de tensión: las continuas y las alternas:
Tensión continua (VDC) –Es aquella que tiene una polaridad definida, como la que proporcionan las pilas, baterías y fuentes de alimentación.
Tensión Alterna (VAC) .- –Es aquella cuya polaridad va cambiando o alternando con el transcurso del tiempo, las fuentes de tensión alterna más comunes son los generadores y las redes de energía domiciliarias.


CORRIENTE


También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido, la unidad de medida de este parámetro es el amperio (A). Al igual que existen voltajes continuos o alternos, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.

CORRIENTE CONTINUA

La corriente continua (CC o DC) se genera a partir de un flujo continuo de electrones (cargas negativas) siempre en el mismo sentido, el cual es desde el polo negativo de la fuente al polo positivo. Al desplazarse en este sentido los electrones, los huecos o ausencias de electrones (cargas positivas) lo hacen en sentido contrario, es decir, desde el polo positivo al negativo. Por convenio, se toma como corriente eléctrica al flujo de cargas positivas, aunque éste es a consecuencia del flujo de electrones, por tanto el sentido de la corriente eléctrica es del polo positivo de la fuente al polo negativo y contrario al flujo de electrones y siempre tiene el mismo signo. La corriente continua se caracteriza por su tensión, porque, al tener un flujo de electrones prefijado pero continuo en el tiempo, proporciona un valor fijo de ésta (de signo continuo), y en la gráfica V-t (tensión tiempo) se representa como una línea recta de valor V.

CORRIENTE ALTERNA


En la corriente alterna (CA o AC), los electrones no se desplazan de un polo a otro, sino que a partir de su posición fija en el cable (centro), oscilan de un lado al otro de su centro, dentro de un mismo entorno o amplitud, a una frecuencia determinada (número de oscilaciones por segundo). Por tanto, la corriente así generada (contraria al flujo de electrones) no es un flujo en un sentido constante, sino que va cambiando de sentido y por tanto de signo continuamente, con tanta rapidez como la frecuencia de oscilación de los electrones. la corriente alterna se representa como una curva u onda, que puede ser de diferentes formas (cuadrada, sinusoidal, triangular..) pero siempre caracterizada por su amplitud (tensión de cresta positiva a cresta negativa de onda), frecuencia (número de oscilaciones de la onda en un segundo) y período (tiempo que tarda en dar una oscilación).



CONDUCTORES DE LA CORRIENTE ELÉCTRICA

Conductores son todos aquellos materiales o elementos que permiten que los atraviese el flujo de la corriente o de cargas eléctricas en movimiento. Si establecemos la analogía con una tubería que contenga líquido, el conductor sería la tubería y el líquido el medio que permite el movimiento de las cargas. Cuando se aplica una diferencia de potencial a los extremos de un trozo de metal, se establece de inmediato un flujo de corriente, pues los electrones o cargas eléctricas de los átomos que forman las moléculas del metal, comienzan a moverse de inmediato empujados por la presión que sobre ellos ejerce la tensión o voltaje.Esa presión procedente de una fuente de fuerza electromotriz (FEM) cualquiera (batería, generador, etc.) es la que hace posible que se establezca un flujo de corriente eléctrica a través del metal. Los mejores conductores de la corriente eléctrica son los metales, porque ceden más fácil que otros materiales los electrones que giran en la última órbita de sus átomos (la más alejada del núcleo). Sin embargo, no todos los metales son buenos conductores, pues existen otros que, por el contrario, ofrecen gran resistencia al paso de la corriente y por ello se emplean como resistencia eléctrica para producir calor. Un ejemplo de un metal que se comporta de esa forma es el alambre nicromo (NiCr). El más utilizado de todos los metales en cualquier tipo de circuito eléctrico es el cobre (Cu), por ser relativamente barato y buen conductor de la electricidad, al igual que el aluminio (Al). Sin embargo, los mejores metales conductores son el oro (Au) y la plata (Ag), aunque ambos se utilizan muy limitadamente por su alto costo.El oro se emplea en forma de hilo muy fino para unir los contactos de los chips de circuitos integrados y microprocesadores a los contactos que los unen con las patillas exteriores de esos elementos electrónicos, mientras que la plata se utiliza para revestir los contactos eléctricos de algunos tipos de relés diseñados para interrumpir el flujo de grandes cargas de corriente en amper.El aluminio, por su parte, se emplea para fabricar cables gruesos, sin forro. Este tipo de cable se coloca, generalmente, a la intemperie, colgado de grandes aislantes de porcelana situados en la parte más alta de las torres metálicas destinadas a la distribución de corriente eléctrica de alta tensión.




MATERIALES SEMICONDUCTORES


Existen también otros elementos denominados metaloides, que actúan como semiconductores de la corriente eléctrica. Entre esos elementos o materiales se encuentran el silicio (Si), el galio (Ga) y el germanio (Ge).Los átomos de esos elementos son menos propensos a ceder electrones cuando los atraviesa una corriente eléctrica y su característica principal es dejarla pasar en un solo sentido e impedirlo en sentido contrario. El cristal de silicio es el elemento más utilizado en la actualidad como material semiconductor para fabricar diodos, transistores, circuitos integrados y los microprocesadores que utilizan los ordenadores o computadoras personales, así como otros dispositivos digitales.

AISLANTES

Se denomina aislante eléctrico al material con escasa conductividad eléctrica. Aunque no existen cuerpos absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos, forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga, y para confeccionar aisladores, elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico. Los más frecuentemente utilizados son los materiales plásticos y las cerámicas.El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor).Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.